Berliner Boersenzeitung - After AI, quantum computing eyes its 'Sputnik' moment

EUR -
AED 4.101345
AFN 77.032505
ALL 99.346177
AMD 432.43567
ANG 2.013049
AOA 1036.77807
ARS 1075.022084
AUD 1.638665
AWG 2.009927
AZN 1.903727
BAM 1.957678
BBD 2.255263
BDT 133.478024
BGN 1.96194
BHD 0.420821
BIF 3237.947656
BMD 1.116626
BND 1.443284
BOB 7.718265
BRL 6.064287
BSD 1.116971
BTN 93.354568
BWP 14.765294
BYN 3.655406
BYR 21885.869656
BZD 2.251419
CAD 1.514765
CDF 3205.83349
CHF 0.948568
CLF 0.037681
CLP 1039.724056
CNY 7.877914
CNH 7.876551
COP 4648.301891
CRC 579.545486
CUC 1.116626
CUP 29.590589
CVE 110.369377
CZK 25.076404
DJF 198.897208
DKK 7.459169
DOP 67.044305
DZD 147.724424
EGP 54.187291
ERN 16.74939
ETB 129.612896
FJD 2.456911
FKP 0.850377
GBP 0.839089
GEL 3.048765
GGP 0.850377
GHS 17.559528
GIP 0.850377
GMD 76.478493
GNF 9650.126208
GTQ 8.634359
GYD 233.659928
HKD 8.702442
HNL 27.707575
HRK 7.591952
HTG 147.378717
HUF 393.677561
IDR 16934.414972
ILS 4.208201
IMP 0.850377
INR 93.284779
IQD 1463.20342
IRR 47001.617801
ISK 152.296414
JEP 0.850377
JMD 175.488318
JOD 0.791351
JPY 161.091169
KES 144.067258
KGS 94.062898
KHR 4536.351005
KMF 492.822874
KPW 1004.96277
KRW 1492.18639
KWD 0.340616
KYD 0.930801
KZT 535.514042
LAK 24664.21472
LBP 100022.944684
LKR 340.786863
LRD 223.390262
LSL 19.608883
LTL 3.297107
LVL 0.675436
LYD 5.304278
MAD 10.830976
MDL 19.490869
MGA 5051.754868
MKD 61.661441
MMK 3626.7577
MNT 3794.295108
MOP 8.965839
MRU 44.388973
MUR 51.230572
MVR 17.151745
MWK 1936.622809
MXN 21.621786
MYR 4.695396
MZN 71.296513
NAD 19.608708
NGN 1830.652829
NIO 41.108877
NOK 11.731586
NPR 149.370267
NZD 1.791604
OMR 0.429846
PAB 1.116951
PEN 4.186559
PGK 4.37235
PHP 62.154728
PKR 310.35047
PLN 4.275394
PYG 8714.358307
QAR 4.072206
RON 4.974455
RSD 117.081921
RUB 103.595912
RWF 1505.75772
SAR 4.190263
SBD 9.275742
SCR 15.20849
SDG 671.658527
SEK 11.379804
SGD 1.442608
SHP 0.850377
SLE 25.511892
SLL 23415.083225
SOS 638.317954
SRD 33.334619
STD 23111.9038
SVC 9.773243
SYP 2805.55626
SZL 19.61599
THB 36.878746
TJS 11.873175
TMT 3.908191
TND 3.384446
TOP 2.615244
TRY 38.089784
TTD 7.597151
TWD 35.731768
TZS 3046.939603
UAH 46.168836
UGX 4138.117278
USD 1.116626
UYU 46.153648
UZS 14213.632892
VEF 4045036.356711
VES 41.049924
VND 27474.582801
VUV 132.568082
WST 3.12372
XAF 656.574989
XAG 0.035614
XAU 0.000427
XCD 3.017737
XDR 0.827794
XOF 656.577931
XPF 119.331742
YER 279.519396
ZAR 19.564743
ZMK 10050.970555
ZMW 29.570833
ZWL 359.553117
  • RBGPF

    3.5000

    60.5

    +5.79%

  • RYCEF

    0.0100

    6.96

    +0.14%

  • CMSC

    0.0000

    25.12

    0%

  • RELX

    -0.0700

    48.06

    -0.15%

  • AZN

    -0.6000

    78.3

    -0.77%

  • RIO

    -1.2750

    63.905

    -2%

  • VOD

    -0.0350

    10.025

    -0.35%

  • BTI

    -0.1200

    37.45

    -0.32%

  • NGG

    0.6000

    69.43

    +0.86%

  • SCS

    -0.3850

    12.925

    -2.98%

  • GSK

    -0.6050

    41.015

    -1.48%

  • BCC

    -2.1400

    142.55

    -1.5%

  • JRI

    -0.0860

    13.314

    -0.65%

  • BP

    -0.2000

    32.56

    -0.61%

  • CMSD

    0.0500

    25.06

    +0.2%

  • BCE

    -0.2870

    34.903

    -0.82%

After AI, quantum computing eyes its 'Sputnik' moment
After AI, quantum computing eyes its 'Sputnik' moment / Photo: HENRY NICHOLLS - AFP

After AI, quantum computing eyes its 'Sputnik' moment

Quantum computing promises society-changing breakthroughs in drug development and tackling climate change, and on an unassuming English high street, the race to unleash the latest tech revolution is gathering pace.

Text size:

The founder of Cambridge-based Riverlane, Steve Brierley, predicts that the technology will have its "Sputnik" breakthrough within years.

"Quantum computing is not going to be just slightly better than the previous computer, it's going to be a huge step forward," he said.

His company produces the world's first dedicated quantum decoder chip, which detects and corrects the errors currently holding the technology back.

Building devices "that live up to the technology's incredible promise requires a massive step change in scale and reliability, and that requires reliable error correction schemes", explained John Martinis, former quantum computing lead at Google Quantum AI.

In a sign of confidence in Riverlane's work and the sector in general, the company announced on Tuesday that it had raised $75 million in Series C funding, typically the last round of venture capital financing prior to an initial public offering.

"Over the next two to three years, we'll be able to get to systems that can support a million error-free operations," said Earl Campbell, vice president of quantum science at Riverlane.

This is the threshold where a quantum computer should be able to perform certain tasks better than conventional computers, he added.

Quantum computers are "really good at simulating other quantum systems", explained Brierley, meaning they can simulate interactions between particles, atoms and molecules.

This could open the door to revolutionary medicines and also promises huge efficiency improvements in how fertilisers are made, transforming an industry that today produces around two percent of global CO2 emissions.

It also paves the way for much more efficient batteries, another crucial weapon in the fight against climate change.

- 'Exquisite control' -

The amount of information that quantum computers can harness increases exponentially when the machine is scaled up, compared with conventional computers.

"I think most people are more familiar with exponential after Covid, so we know how quickly something that's exponential can spread," said Campbell, inside Riverlane's testing lab, a den of oscilloscopes and chipboards.

In traditional computers, data is stored in bits, and each bit can take a value of 0 or 1, much like a light-switch can be 'on' or 'off'.

One bit can therefore represent two states, such as black or white.

Quantum bits, or 'qubits', are more like dimmer switches, and one of them can store all values between 0 and 1, meaning all colours of the spectrum can be represented on one qubit.

But there is a catch. The strangeness of quantum behaviour means that the values have to be read many times and processed by complex algorithms, requiring "exquisite control" of the qubits.

The qubits are also highly susceptible to errors generated by noise, and the solution to this problem is the "key to unlocking useful quantum computing", said Brierley.

Tech giants such as Google, IBM, Microsoft and Amazon are all investing huge sums in generating qubits, and in trying to reduce errors, either through shielding the hardware or by combining qubits and then using algorithms to detect and correct mistakes.

- 'Super exciting' -

"This is like the way an SSD (memory) card works. It's built out of faulty components with active error correction on top," said Brierley.

All of which increases the number of components required and time taken to execute individual operations.

"We definitely won't be using quantum computers to send email," explained Brierley.

Those drawbacks grow at a steady rate as the computer gets larger, whereas the benefits increase on an upward curve, explaining why they work better on larger, more complex tasks.

"And this means that we'll be able to solve problems which would otherwise be unsolvable," said Brierley.

While today's quantum computers can only perform around 1,000 operations before being overwhelmed by errors, the quality of the actual components has "got to the point where the physical qubits are good enough," said Brierley.

"So this is a super exciting time. The challenge now is to scale up... and to add error correction into the systems," he added.

Such progress, along with quantum computing's potential to crack all existing cryptography and create potent new materials, is spurring regulators into action.

"There's definitely a scrambling to understand what's coming next in technology. It's really important that we learn the lessons from AI, to not be surprised by the technology and think early about what those implications are going to be," said Brierley.

"I think there will ultimately be regulation around quantum computing, because it's such an important technology. And I think this is a technology where no government wants to come second."

(A.Berg--BBZ)