Berliner Boersenzeitung - Forests could absorb much more carbon, but does it matter?

EUR -
AED 4.104306
AFN 77.088534
ALL 99.418435
AMD 432.750729
ANG 2.014513
AOA 1036.724537
ARS 1074.451554
AUD 1.643292
AWG 2.011389
AZN 1.904081
BAM 1.959102
BBD 2.256903
BDT 133.575108
BGN 1.958092
BHD 0.421186
BIF 3240.302737
BMD 1.117438
BND 1.444334
BOB 7.723878
BRL 6.162229
BSD 1.117784
BTN 93.422468
BWP 14.776034
BYN 3.658065
BYR 21901.788071
BZD 2.253057
CAD 1.517761
CDF 3208.165381
CHF 0.950204
CLF 0.037689
CLP 1039.944272
CNY 7.880067
CNH 7.870123
COP 4639.424479
CRC 579.967011
CUC 1.117438
CUP 29.612111
CVE 110.449653
CZK 25.087832
DJF 198.591551
DKK 7.466615
DOP 67.093069
DZD 147.657009
EGP 54.142736
ERN 16.761573
ETB 129.707168
FJD 2.459262
FKP 0.850995
GBP 0.839107
GEL 3.051043
GGP 0.850995
GHS 17.572299
GIP 0.850995
GMD 76.548818
GNF 9657.145107
GTQ 8.640639
GYD 233.829878
HKD 8.706464
HNL 27.727728
HRK 7.597474
HTG 147.485911
HUF 393.539807
IDR 16941.25656
ILS 4.226056
IMP 0.850995
INR 93.284241
IQD 1464.267663
IRR 47035.770303
ISK 152.262556
JEP 0.850995
JMD 175.615957
JOD 0.791709
JPY 160.704414
KES 144.194651
KGS 94.13132
KHR 4539.650463
KMF 493.181764
KPW 1005.693717
KRW 1488.975611
KWD 0.340897
KYD 0.931478
KZT 535.903542
LAK 24682.153929
LBP 100095.695125
LKR 341.03473
LRD 223.552742
LSL 19.623146
LTL 3.299505
LVL 0.675928
LYD 5.308136
MAD 10.838854
MDL 19.505046
MGA 5055.429199
MKD 61.70629
MMK 3629.395577
MNT 3797.054841
MOP 8.97236
MRU 44.421259
MUR 51.268486
MVR 17.164273
MWK 1938.031388
MXN 21.694955
MYR 4.698871
MZN 71.348848
NAD 19.62297
NGN 1831.984424
NIO 41.138777
NOK 11.71545
NPR 149.47891
NZD 1.791197
OMR 0.429669
PAB 1.117764
PEN 4.189604
PGK 4.375531
PHP 62.188829
PKR 310.5762
PLN 4.274593
PYG 8720.696587
QAR 4.075168
RON 4.972492
RSD 117.064808
RUB 103.07316
RWF 1506.852914
SAR 4.193246
SBD 9.282489
SCR 14.59602
SDG 672.143165
SEK 11.365691
SGD 1.442841
SHP 0.850995
SLE 25.530448
SLL 23432.113894
SOS 638.782227
SRD 33.752262
STD 23128.713955
SVC 9.780351
SYP 2807.596846
SZL 19.630258
THB 36.767793
TJS 11.881811
TMT 3.911034
TND 3.386908
TOP 2.617156
TRY 38.130123
TTD 7.602676
TWD 35.736832
TZS 3046.362208
UAH 46.202417
UGX 4141.127086
USD 1.117438
UYU 46.187217
UZS 14223.971001
VEF 4047978.463464
VES 41.096875
VND 27494.566096
VUV 132.664504
WST 3.125992
XAF 657.05254
XAG 0.035881
XAU 0.000426
XCD 3.019933
XDR 0.828396
XOF 657.055485
XPF 119.331742
YER 279.722751
ZAR 19.477573
ZMK 10058.288435
ZMW 29.592341
ZWL 359.814634
  • RBGPF

    58.8300

    58.83

    +100%

  • CMSD

    0.0100

    25.02

    +0.04%

  • RELX

    -0.1400

    47.99

    -0.29%

  • SCS

    -0.3900

    12.92

    -3.02%

  • RYCEF

    0.0200

    6.97

    +0.29%

  • NGG

    0.7200

    69.55

    +1.04%

  • CMSC

    0.0300

    25.15

    +0.12%

  • GSK

    -0.8200

    40.8

    -2.01%

  • BTI

    -0.1300

    37.44

    -0.35%

  • RIO

    -1.6100

    63.57

    -2.53%

  • VOD

    -0.0500

    10.01

    -0.5%

  • BP

    -0.1200

    32.64

    -0.37%

  • JRI

    -0.0800

    13.32

    -0.6%

  • BCE

    -0.1500

    35.04

    -0.43%

  • BCC

    -7.1900

    137.5

    -5.23%

  • AZN

    -0.5200

    78.38

    -0.66%

Forests could absorb much more carbon, but does it matter?
Forests could absorb much more carbon, but does it matter? / Photo: MAURO PIMENTEL - AFP/File

Forests could absorb much more carbon, but does it matter?

Protecting forests globally could vastly increase the amount of carbon they sequester, a new study finds, but given our current emissions track, does it really matter?

Text size:

For Thomas Crowther, an author of the assessment, the answer is a resounding yes.

"I absolutely see this study as a cause for hope," the professor at ETH Zurich said.

"I hope that people will see the real potential and value that nature can bring to the climate change topic."

But for others, calculating the hypothetical carbon storage potential of global forests is more an academic exercise than a useful framework for forest management.

"I am a forester by trade, so I really like to see trees grow," said Martin Lukac, professor of ecosystem science at University of Reading.

However, he considers forest carbon potential calculations like these "dangerous," warning they "distract from the main challenge and offer false hope."

Crowther has been here before: in 2019 he produced a study on how many trees the Earth could support, where to plant them and how much carbon they could store.

"Forest restoration is the best climate change solution available today," he argued.

That work caused a firestorm of criticism, with experts unpicking everything from its modelling to the claim that reforestation was the "best" solution available.

Nodding to the furore, Crowther and his colleagues have now vastly expanded their data set and used new modelling approaches for the study published Monday in the journal Nature.

They use ground-sourced surveys and data from three models based on high-resolution satellite imagery.

The modelling approach is "as good as it currently gets," acknowledged Lukac, who was not involved in the work.

- 'Achieve climate targets' -

The study estimates forests are storing 328 gigatons of carbon less than they would if untouched by human destruction.

Estimates of the world's remaining carbon "budget" to keep warming below the 1.5C range from around 250-500 gigatons.

Much of the forest potential -- 139 gigatons -- could be captured by just leaving existing forests to reach full maturity, the study says.

Another 87 gigatons could be regained by reconnecting fragmented forests.

The remainder is in areas used for agriculture, pasture or urban infrastructure, which the authors acknowledge is unlikely to be reversed.

Still, they say their findings present a massive opportunity.

"Forest conservation, restoration and sustainable management can help achieve climate targets by mitigating emissions and enhancing carbon sequestration," the study says.

Modelling and mapping the world's forests is a tricky business.

There's the scale of the problem, but also the complexity of what constitutes a forest.

Trees, of course, but the carbon storage potential of a woodland or jungle is also in its soil and the organic matter littering the forest floor.

- Trees versus emissions? -

Ground-level surveys can offer granular data, but are difficult to extrapolate.

And satellite imagery covers large swathes of land, but can be confounded by something as simple as the weather, said Nicolas Younes, research fellow at the Australian National University.

"Most of the places where there is potential for carbon storage are tropical countries... these are places where there is persistent cloud cover, therefore satellite imagery is very hard to validate," he told AFP.

Younes, an expert on forest remote sensing, warns the complexity of the study's datasets and modelling risks introducing errors, though the resulting estimates remain "very valuable".

"It will not show us the exact truth for every pixel on Earth, but it is useful."

One objection to quantifying forest carbon potential is that conditions are far from static, with accelerating climate change, forest fires and pest vulnerability all playing a role.

And, for Lukac, whatever potential forests have is irrelevant to the urgency of cutting emissions.

The study's estimated 328 gigatons "would be wiped (out) in 30 years by current emissions," he said.

Crowther, who advises a project to plant a trillion trees globally, rejects an either-or between forest protection and emissions reduction.

"We urgently need both," he said.

(H.Schneide--BBZ)