Berliner Boersenzeitung - Carbon capture: how does CO2 removal work?

EUR -
AED 3.855359
AFN 71.377323
ALL 98.9304
AMD 409.516427
ANG 1.892125
AOA 958.34413
ARS 1056.623594
AUD 1.615519
AWG 1.889397
AZN 1.783436
BAM 1.959346
BBD 2.119737
BDT 125.457077
BGN 1.955898
BHD 0.395617
BIF 3039.829534
BMD 1.049665
BND 1.414788
BOB 7.281457
BRL 6.100126
BSD 1.0499
BTN 88.512294
BWP 14.342507
BYN 3.435719
BYR 20573.431932
BZD 2.116271
CAD 1.468019
CDF 3012.538394
CHF 0.930822
CLF 0.037165
CLP 1025.470248
CNY 7.599311
CNH 7.606927
COP 4605.667141
CRC 535.068474
CUC 1.049665
CUP 27.81612
CVE 110.686953
CZK 25.297954
DJF 186.546724
DKK 7.457556
DOP 63.403524
DZD 140.299428
EGP 52.079328
ERN 15.744973
ETB 129.119469
FJD 2.388985
FKP 0.828518
GBP 0.835408
GEL 2.875939
GGP 0.828518
GHS 16.58171
GIP 0.828518
GMD 74.526346
GNF 9059.657727
GTQ 8.106673
GYD 219.655948
HKD 8.169091
HNL 26.482792
HRK 7.487532
HTG 137.799417
HUF 409.458002
IDR 16637.71341
ILS 3.824506
IMP 0.828518
INR 88.457727
IQD 1375.585844
IRR 44164.650178
ISK 145.073956
JEP 0.828518
JMD 166.621585
JOD 0.744525
JPY 161.875648
KES 135.931727
KGS 91.099783
KHR 4252.192128
KMF 495.96684
KPW 944.698007
KRW 1469.588545
KWD 0.323055
KYD 0.874917
KZT 524.238873
LAK 23050.641277
LBP 94049.974422
LKR 305.502961
LRD 188.939707
LSL 19.03039
LTL 3.099387
LVL 0.634932
LYD 5.127613
MAD 10.574845
MDL 19.19247
MGA 4901.935038
MKD 61.604812
MMK 3409.270632
MNT 3566.761255
MOP 8.413649
MRU 41.886862
MUR 49.039901
MVR 16.227576
MWK 1821.168622
MXN 21.256448
MYR 4.673157
MZN 67.084504
NAD 19.030647
NGN 1771.288201
NIO 38.575455
NOK 11.650062
NPR 141.620031
NZD 1.795658
OMR 0.404098
PAB 1.04992
PEN 3.982432
PGK 4.225689
PHP 61.895602
PKR 291.596027
PLN 4.312506
PYG 8179.805456
QAR 3.821305
RON 4.976566
RSD 116.999844
RUB 109.171889
RWF 1438.040905
SAR 3.941569
SBD 8.799923
SCR 14.330794
SDG 631.372893
SEK 11.529645
SGD 1.412723
SHP 0.828518
SLE 23.858676
SLL 22010.952976
SOS 599.826672
SRD 37.256789
STD 21725.944051
SVC 9.186628
SYP 2637.314389
SZL 19.030664
THB 36.384557
TJS 11.191784
TMT 3.673827
TND 3.338456
TOP 2.458422
TRY 36.294159
TTD 7.131043
TWD 34.062702
TZS 2781.612304
UAH 43.569361
UGX 3890.040978
USD 1.049665
UYU 44.750999
UZS 13467.200332
VES 48.873774
VND 26682.481618
VUV 124.618326
WST 2.930235
XAF 657.15898
XAG 0.034777
XAU 0.0004
XCD 2.836771
XDR 0.803054
XOF 655.517644
XPF 119.331742
YER 262.33747
ZAR 18.932858
ZMK 9448.244693
ZMW 28.950504
ZWL 337.991668
  • RBGPF

    -0.9500

    59.24

    -1.6%

  • SCS

    0.4450

    13.715

    +3.24%

  • RELX

    -0.1250

    46.625

    -0.27%

  • AZN

    0.6650

    66.295

    +1%

  • CMSC

    0.1761

    24.8483

    +0.71%

  • BTI

    0.0850

    37.465

    +0.23%

  • NGG

    0.1000

    63.21

    +0.16%

  • GSK

    0.2500

    34.21

    +0.73%

  • RIO

    0.5850

    62.935

    +0.93%

  • CMSD

    0.0900

    24.55

    +0.37%

  • BP

    -0.4400

    29.28

    -1.5%

  • JRI

    0.1030

    13.313

    +0.77%

  • BCE

    0.0900

    26.86

    +0.34%

  • BCC

    10.8600

    154.64

    +7.02%

  • RYCEF

    0.0200

    6.82

    +0.29%

  • VOD

    0.1750

    8.905

    +1.97%

Carbon capture: how does CO2 removal work?
Carbon capture: how does CO2 removal work? / Photo: VYACHESLAV OSELEDKO - AFP/File

Carbon capture: how does CO2 removal work?

With global temperatures still on the rise, even the most sceptical of scientists agree that carbon dioxide removal (CDR) is crucial to meet the Paris Agreement goal of capping global warming below two degrees Celsius.

Text size:

A new global assessment published Thursday says limiting global warming at liveable levels will be impossible without massively scaling up CDR.

But even the most ardent promoters of carbon removal technology insist that slashing emissions remains the primary objective, even if the continued failure to do so has pushed CDR sharply higher on the climate agenda.

Methods range from conventional techniques like restoring or expanding CO2-absorbing forests and wetlands, to more novel technologies such as direct air capture.

Here AFP explains the essentials on CO2 removal:

- What is CO2 removal? -

There are basically two ways to extract CO2 from thin air.

One is to boost nature's capacity to absorb and stockpile carbon. Healing degraded forests, restoring mangroves, industrial-scale tree planting, boosting carbon uptake in rocks or the ocean -- all fall under the hotly debated category of "nature-based solutions".

The second way -- called direct air capture -- uses chemical processes to strip out CO2, then recycles it for industrial use or locks it away in porous rock formations, unused coal beds or saline aquifers.

A variation known as bioenergy with carbon capture and storage, or BECCS, combines elements from both approaches.

Wood pellets or other biomass is converted into biofuels or burned to drive turbines that generate electricity. The CO2 emitted is roughly cancelled out by the CO2 absorbed during plant growth.

But when carbon dioxide in the power plant's exhaust is syphoned off and stored underground, the process becomes a net-negative technology.

- Do we really need it? -

Yes, for a couple of reasons.

Even if the world begins drawing down carbon pollution by three, four or five percent each year -- and that is a significant "if" -- some sectors like cement and steel production, long-haul aviation and agriculture are expected to maintain significant emission levels for decades.

The first-ever State of Carbon Dioxide report concluded that CDR must extract between 450 billion and 1.1 trillion tonnes of CO2 over the remainder of the 21st century -- the equivalent of 10 to 30 times annual CO2 emissions today.

And there is another reason.

The UN's Intergovernmental Panel on Climate Change (IPCC) makes it alarmingly clear that the 1.5C threshold will be breached in the coming decades no matter how aggressively greenhouse gases are drawn down.

CO2 lingers in the atmosphere for centuries, which means that the only way to bring Earth's average surface temperature back under the wire by 2100 is to suck some of it out of the air.

- What's hot, what's not? -

BECCS was pencilled into IPCC climate models more than a decade ago as the theoretically cheapest form of negative emissions, but has barely developed since.

A peer-reviewed proposal in 2019 to draw down excess CO2 by planting a trillion trees sparked huge excitement in the media and among gas and oil companies that have made afforestation offsets a central to their efforts to align with Paris treaty goals.

But the idea was sharply criticised by experts, who pointed out that it would require converting twice the area of India into mono-culture tree farms.

"I don't see a BECCS boom," said Oliver Geden, a senior fellow at the German Institute for International and Security Affairs and an expert on CDR.

Also, planting trees to soak up CO2 is fine -- until the forests burn down in climate-enhanced wildfires.

Among all the carbon dioxide removal methods, direct air capture is among the least developed but the most talked about.

- How fast can we scale up? -

Direct air capture (DAC) is a large-scale industrial process that requires huge amounts of energy to run.

Existing technology is also a long way from making a dent in the problem.

The amount, for example, of CO2 potentially extracted from what will be the world's largest direct air capture plant (36,000 tonnes) -- being built in Iceland by Swiss company Climeworks -- is equivalent to 30 seconds' worth of current global emissions (about 40 billion tonnes).

But the trajectory of earlier technologies such as solar panels suggests that scaling the industry up to remove billions of tonnes per year is not out of reach.

"It's at the upper end of what we've seen before," University of Wisconsin–Madison professor Gregory Nemet. "It's a huge challenge, but it's not unprecedented."

Climeworks announced last week the world's first certified CO2 removal and storage on behalf of paying clients, including Microsoft and software service company Stripe.

(A.Lehmann--BBZ)