Berliner Boersenzeitung - RNA base in asteroid samples suggests origins of life on Earth: study

EUR -
AED 4.104306
AFN 77.088534
ALL 99.418435
AMD 432.750729
ANG 2.014513
AOA 1036.724537
ARS 1074.451554
AUD 1.643292
AWG 2.011389
AZN 1.904081
BAM 1.959102
BBD 2.256903
BDT 133.575108
BGN 1.957551
BHD 0.421186
BIF 3240.302737
BMD 1.117438
BND 1.444334
BOB 7.723878
BRL 6.162229
BSD 1.117784
BTN 93.422468
BWP 14.776034
BYN 3.658065
BYR 21901.788071
BZD 2.253057
CAD 1.517761
CDF 3208.165381
CHF 0.950498
CLF 0.037689
CLP 1039.944272
CNY 7.880067
CNH 7.870123
COP 4639.424479
CRC 579.967011
CUC 1.117438
CUP 29.612111
CVE 110.449653
CZK 25.087721
DJF 198.591551
DKK 7.466615
DOP 67.093069
DZD 147.830834
EGP 54.137737
ERN 16.761573
ETB 129.707168
FJD 2.459262
FKP 0.850995
GBP 0.838981
GEL 3.051043
GGP 0.850995
GHS 17.572299
GIP 0.850995
GMD 76.548818
GNF 9657.145107
GTQ 8.640639
GYD 233.829878
HKD 8.704949
HNL 27.727728
HRK 7.597474
HTG 147.485911
HUF 393.495109
IDR 16941.25656
ILS 4.221139
IMP 0.850995
INR 93.284241
IQD 1464.267663
IRR 47035.770303
ISK 152.262556
JEP 0.850995
JMD 175.615957
JOD 0.791709
JPY 160.803866
KES 144.194651
KGS 94.13132
KHR 4539.650463
KMF 493.181764
KPW 1005.693717
KRW 1488.990591
KWD 0.340897
KYD 0.931478
KZT 535.903542
LAK 24682.153929
LBP 100095.695125
LKR 341.03473
LRD 223.552742
LSL 19.623146
LTL 3.299505
LVL 0.675928
LYD 5.308136
MAD 10.838854
MDL 19.505046
MGA 5055.429199
MKD 61.70629
MMK 3629.395577
MNT 3797.054841
MOP 8.97236
MRU 44.421259
MUR 51.268486
MVR 17.164273
MWK 1938.031388
MXN 21.697078
MYR 4.698871
MZN 71.348848
NAD 19.62297
NGN 1831.984424
NIO 41.138777
NOK 11.713438
NPR 149.47891
NZD 1.791484
OMR 0.430165
PAB 1.117764
PEN 4.189604
PGK 4.375531
PHP 62.188829
PKR 310.5762
PLN 4.274593
PYG 8720.696587
QAR 4.075168
RON 4.97875
RSD 117.195711
RUB 103.07316
RWF 1506.852914
SAR 4.193122
SBD 9.282489
SCR 14.849973
SDG 672.143165
SEK 11.364797
SGD 1.442841
SHP 0.850995
SLE 25.530448
SLL 23432.113894
SOS 638.782227
SRD 33.752262
STD 23128.713955
SVC 9.780351
SYP 2807.596846
SZL 19.630258
THB 36.767793
TJS 11.881811
TMT 3.911034
TND 3.386908
TOP 2.617156
TRY 38.132438
TTD 7.602676
TWD 35.736832
TZS 3046.362208
UAH 46.202417
UGX 4141.127086
USD 1.117438
UYU 46.187217
UZS 14223.971001
VEF 4047978.463464
VES 41.096875
VND 27494.566096
VUV 132.664504
WST 3.125992
XAF 657.05254
XAG 0.035881
XAU 0.000426
XCD 3.019933
XDR 0.828396
XOF 657.055485
XPF 119.331742
YER 279.722751
ZAR 19.426272
ZMK 10058.288435
ZMW 29.592341
ZWL 359.814634
  • RBGPF

    3.5000

    60.5

    +5.79%

  • CMSD

    0.0100

    25.02

    +0.04%

  • RELX

    -0.1400

    47.99

    -0.29%

  • VOD

    -0.0500

    10.01

    -0.5%

  • BCC

    -7.1900

    137.5

    -5.23%

  • NGG

    0.7200

    69.55

    +1.04%

  • JRI

    -0.0800

    13.32

    -0.6%

  • RYCEF

    0.0000

    6.95

    0%

  • SCS

    -0.3900

    12.92

    -3.02%

  • RIO

    -1.6100

    63.57

    -2.53%

  • CMSC

    0.0300

    25.15

    +0.12%

  • BCE

    -0.1500

    35.04

    -0.43%

  • GSK

    -0.8200

    40.8

    -2.01%

  • AZN

    -0.5200

    78.38

    -0.66%

  • BTI

    -0.1300

    37.44

    -0.35%

  • BP

    -0.1200

    32.64

    -0.37%

RNA base in asteroid samples suggests origins of life on Earth: study
RNA base in asteroid samples suggests origins of life on Earth: study / Photo: Morgan Sette - AFP

RNA base in asteroid samples suggests origins of life on Earth: study

The black particles from an asteroid some 300 million kilometres away look unremarkable, like pieces of charcoal, but they hold a component of life itself.

Text size:

Scientists have discovered the chemical compound uracil, one of the building blocks of RNA, in just 10 milligrammes of material from the asteroid Ryugu, according to new research published on Tuesday.

The finding lends weight to a longstanding theory that life on Earth may have been seeded from outer space when asteroids crashed into our planet carrying fundamental elements.

It is some of the latest research from analysis of 5.4 grams of rocks and dust gathered by the Hayabusa-2 probe from the asteroid Ryugu.

Hayabusa-2 was launched in 2014 and returned to Earth's orbit in late 2020 with a capsule containing the sample from the asteroid.

The precious cargo was divided between international research teams and has already yielded several insights, including that some of life's building blocks, amino acids, may have been formed in space.

The first drop of water discovered in a near-Earth asteroid has also been found among the samples.

The new research, published Tuesday in the journal Nature Communications, went looking for another foundation of life: the nucleobases of RNA.

While DNA, the famed double helix, functions as a genetic blueprint, single-strand RNA is an all-important messenger, converting the instructions contained in DNA for implementation.

Like DNA, it is made up of bases: adenine, guanine, cytosine, and uracil.

Scientists have previously found some or all of these bases in different asteroids that landed on Earth as meteorites. However, they could not be sure the chemicals came from outer space or were contaminated when they landed.

"Since every meteorite has landed on the surface of the Earth where microorganisms are ubiquitously present everywhere, it always makes the interpretation on the origin of such biologically important molecules in meteorites more complex," said Yasuhiro Oba, associate professor at Hokkaido University and an author of the research.

- 'Like brewing coffee' -

Testing the Ryugu samples was a multi-phase process that began by putting them in hot water, like "brewing coffee or tea", Oba said.

Acid was then applied to extract molecules that were analysed by extremely sensitive tools capable of detecting the minute quantities of uracil present.

The discovery offers "strong evidence that one of the RNA components has been provided to the Earth even before the emergence of life", Oba told AFP.

"We expect it plays a role for prebiotic evolution and possibly the emergence of the first life," he said.

RNA's other bases were not found in the sample, though Oba believes they could be present at levels too low to be detected with the method used to find uracil.

He hopes to analyse new samples collected from space in coming years, including Osiris-REx's material from the asteroid Bennu, expected to arrive this year.

Yoshinori Takano, a scientist at the Japan Agency for Marine-Earth Science and Technology and author of the Ryugu research, said he was also keenly awaiting the Martian Moons eXploration project, set to launch from Japan next year and return around 2029.

It will collect samples from Phobos, one of the moons of Mars.

"I am sure it will be very hotly watched by organic cosmochemists for the next 10 years," said Takano.

(Y.Yildiz--BBZ)