Berliner Boersenzeitung - Noxious fumes at night aren't a pollinating moth's delight

EUR -
AED 4.104397
AFN 76.945413
ALL 99.231189
AMD 432.617988
ANG 2.010719
AOA 1036.724537
ARS 1074.129077
AUD 1.641361
AWG 2.011389
AZN 1.904081
BAM 1.955429
BBD 2.252673
BDT 133.324726
BGN 1.955429
BHD 0.42042
BIF 3234.286875
BMD 1.117438
BND 1.441627
BOB 7.709539
BRL 6.162788
BSD 1.115688
BTN 93.249023
BWP 14.748204
BYN 3.651208
BYR 21901.788071
BZD 2.248874
CAD 1.517202
CDF 3208.165381
CHF 0.949812
CLF 0.037598
CLP 1037.433333
CNY 7.880067
CNH 7.870123
COP 4641.820049
CRC 578.89026
CUC 1.117438
CUP 29.612111
CVE 110.244101
CZK 25.088056
DJF 198.672338
DKK 7.466767
DOP 66.967305
DZD 147.657009
EGP 54.142736
ERN 16.761573
ETB 129.466357
FJD 2.459262
FKP 0.850995
GBP 0.83876
GEL 3.051043
GGP 0.850995
GHS 17.539675
GIP 0.850995
GMD 76.548818
GNF 9639.172699
GTQ 8.624365
GYD 233.395755
HKD 8.704949
HNL 27.675753
HRK 7.597474
HTG 147.212093
HUF 393.517458
IDR 16941.25656
ILS 4.221139
IMP 0.850995
INR 93.284241
IQD 1461.522939
IRR 47035.770303
ISK 152.262556
JEP 0.850995
JMD 175.286771
JOD 0.791709
JPY 160.803866
KES 143.922717
KGS 94.13132
KHR 4531.14103
KMF 493.181764
KPW 1005.693717
KRW 1488.975611
KWD 0.340897
KYD 0.929724
KZT 534.908597
LAK 24636.329683
LBP 99909.860054
LKR 340.395471
LRD 223.1377
LSL 19.586187
LTL 3.299505
LVL 0.675928
LYD 5.297996
MAD 10.818149
MDL 19.468309
MGA 5046.04342
MKD 61.603322
MMK 3629.395577
MNT 3797.054841
MOP 8.955702
MRU 44.337595
MUR 51.268486
MVR 17.164273
MWK 1934.433289
MXN 21.697078
MYR 4.698871
MZN 71.348848
NAD 19.586187
NGN 1831.984424
NIO 41.062216
NOK 11.713438
NPR 149.198716
NZD 1.791484
OMR 0.429669
PAB 1.115688
PEN 4.181807
PGK 4.367172
PHP 62.188829
PKR 309.994034
PLN 4.274593
PYG 8704.349913
QAR 4.067529
RON 4.972492
RSD 117.064808
RUB 103.380402
RWF 1504.014883
SAR 4.193134
SBD 9.282489
SCR 14.578236
SDG 672.143165
SEK 11.364797
SGD 1.442952
SHP 0.850995
SLE 25.530448
SLL 23432.113894
SOS 637.579134
SRD 33.752262
STD 23128.713955
SVC 9.762149
SYP 2807.596846
SZL 19.593286
THB 36.793929
TJS 11.859752
TMT 3.911034
TND 3.380559
TOP 2.617156
TRY 38.132438
TTD 7.588561
TWD 35.736832
TZS 3045.822602
UAH 46.114158
UGX 4133.216465
USD 1.117438
UYU 46.101261
UZS 14197.308611
VEF 4047978.463464
VES 41.096875
VND 27494.566096
VUV 132.664504
WST 3.125992
XAF 655.832674
XAG 0.035881
XAU 0.000426
XCD 3.019933
XDR 0.826843
XOF 655.832674
XPF 119.331742
YER 279.722751
ZAR 19.426272
ZMK 10058.288435
ZMW 29.537401
ZWL 359.814634
  • NGG

    0.7200

    69.55

    +1.04%

  • GSK

    -0.8200

    40.8

    -2.01%

  • SCS

    -0.3900

    12.92

    -3.02%

  • CMSC

    0.0300

    25.15

    +0.12%

  • RELX

    -0.1400

    47.99

    -0.29%

  • RBGPF

    58.8300

    58.83

    +100%

  • AZN

    -0.5200

    78.38

    -0.66%

  • BTI

    -0.1300

    37.44

    -0.35%

  • CMSD

    0.0100

    25.02

    +0.04%

  • RYCEF

    0.0200

    6.97

    +0.29%

  • BCE

    -0.1500

    35.04

    -0.43%

  • BCC

    -7.1900

    137.5

    -5.23%

  • VOD

    -0.0500

    10.01

    -0.5%

  • JRI

    -0.0800

    13.32

    -0.6%

  • RIO

    -1.6100

    63.57

    -2.53%

  • BP

    -0.1200

    32.64

    -0.37%

Noxious fumes at night aren't a pollinating moth's delight
Noxious fumes at night aren't a pollinating moth's delight / Photo: Ron Wolf - University of Washington/AFP

Noxious fumes at night aren't a pollinating moth's delight

Certain plants have flowers that open only in the evening, and depend on nocturnal pollinators such as moths to thrive.

Text size:

But a new paper published in Science on Thursday finds an atmospheric pollutant that is much more prevalent at night drastically reduces the fluttering creatures' ability to track floral scents.

It adds to a growing understanding of how human activities, including not just air but also light and noise pollution, are negatively impacting the natural world.

"Our impacts on the environment are affecting human health, etc, that we tend to concentrate on, but they're also affecting ecosystem functioning through these plants and pollinators," senior author Jeff Riffell, a biology professor at the University of Washington, told AFP.

Riffell said the role of nitrate radicals (NO3) on flower scents hadn't been well studied, because the chemical is around at night and prior research focused on the impacts of pollution on daytime pollinators like bees.

Nitrate radicals form when nitrogen dioxide reacts in the atmosphere with ozone -- both of which come from burning fossil fuels, and have natural sources too.

Unlike nitrogen dioxide and ozone, however, nitrate radicals rapidly degrade in sunlight, making them virtually absent in daytime.

For their study, Riffell and colleagues chose the pale evening primrose (Oenothera pallida), a wildflower that grows in arid settings across the western United States.

Its white flowers emit a strong, piney scent that attracts the white-lined sphinx moth (Hyles lineata) and the tobacco hawk moth (Manduca sexta), species which use their powerful antennae to sniff out pollen from miles away.

- Pollinator crisis -

First, the team chemically analyzed the wildflower's scent to unravel its chemical recipe, revealing a complex bouquet of chemicals.

Next, they separated out the individual chemicals and exposed them one at a time to the moths, to determine exactly which ones were responsible for attracting the winged insects.

This revealed a subset of the chemicals, known as monoterpene compounds, were largely responsible for the scent, and further tests showed that nitrate radicals decimated the levels of these compounds.

Finally, the team carried out wind tunnel experiments involving the moths and the scent chemicals that they emitted at controlled levels from a fake flower.

"What we found is that the moths really were very sensitive to the flower scent and would kind of navigate upwind and try to feed from this artificial flower," said Rifell.

"But if we added NO3, then all of a sudden, for one species of moth, it totally eliminated their ability to recognize the flower. And for another species, it reduced their attraction to the flower by 50 percent."

The nitrate radicals were comparable to those found at night in a typical urban environment, modeled on Seattle. When the team ran the experiment with the pollutants typically present during the day, they saw far less of an impact.

Overall, the experiment revealed a strong impact on pollination activity, at a time when the world's pollinators are in crisis.

Around three-quarters of the more than 240,000 species of flowering plants depend on pollinators, and over 70 pollinator species are endangered or threatened, said Rifell.

The team also ran computer simulations to determine which parts of the world would be most likely to experience problems as a result of this effect.

Areas identified include much of Europe, the Middle East, Central and South Asia, and southern Africa.

"Outside of human activity, some regions accumulate more NO3 because of natural sources, geography and atmospheric circulation," said co-senior author Joel Thornton, a professor of atmospheric sciences.

"But human activity is producing more NO3 everywhere. We wanted to understand how those two sources — natural and human — combine and where levels could be so high that they could interfere with the ability of pollinators to find flowers."

(G.Gruner--BBZ)