Berliner Boersenzeitung - Scientists pinpoint dino-killing asteroid's origin: past Jupiter

EUR -
AED 4.0853
AFN 77.304935
ALL 99.425443
AMD 430.640141
ANG 2.0056
AOA 1030.326739
ARS 1068.290213
AUD 1.649014
AWG 2.002068
AZN 1.894175
BAM 1.956874
BBD 2.246933
BDT 132.982961
BGN 1.955109
BHD 0.419049
BIF 3218.88113
BMD 1.11226
BND 1.441091
BOB 7.717234
BRL 6.126886
BSD 1.11271
BTN 93.21276
BWP 14.749092
BYN 3.64147
BYR 21800.300671
BZD 2.242929
CAD 1.511489
CDF 3192.187171
CHF 0.939754
CLF 0.037189
CLP 1026.173446
CNY 7.889821
CNH 7.894912
COP 4701.557395
CRC 577.164769
CUC 1.11226
CUP 29.474896
CVE 110.725097
CZK 25.154429
DJF 197.670788
DKK 7.461765
DOP 66.891993
DZD 147.145288
EGP 53.86567
ERN 16.683904
ETB 126.732832
FJD 2.46466
FKP 0.847052
GBP 0.842148
GEL 3.003338
GGP 0.847052
GHS 17.483306
GIP 0.847052
GMD 77.857931
GNF 9621.051255
GTQ 8.607723
GYD 232.817735
HKD 8.668745
HNL 27.598894
HRK 7.56227
HTG 146.637268
HUF 394.090518
IDR 17094.661281
ILS 4.165854
IMP 0.847052
INR 93.266636
IQD 1457.826046
IRR 46831.717491
ISK 152.302078
JEP 0.847052
JMD 174.945984
JOD 0.788263
JPY 156.4327
KES 143.481939
KGS 94.173739
KHR 4532.460805
KMF 492.453354
KPW 1001.033584
KRW 1468.249939
KWD 0.339172
KYD 0.927409
KZT 535.105474
LAK 24586.51271
LBP 99658.517708
LKR 336.084392
LRD 216.835034
LSL 19.658686
LTL 3.284215
LVL 0.672795
LYD 5.310914
MAD 10.841048
MDL 19.335608
MGA 5034.309439
MKD 61.539439
MMK 3612.577867
MNT 3779.46024
MOP 8.934882
MRU 44.256281
MUR 51.108874
MVR 17.073163
MWK 1929.658702
MXN 21.471795
MYR 4.784385
MZN 71.045627
NAD 19.658509
NGN 1823.103063
NIO 40.952468
NOK 11.797983
NPR 149.140417
NZD 1.796762
OMR 0.428162
PAB 1.112811
PEN 4.199901
PGK 4.412421
PHP 61.981842
PKR 309.903495
PLN 4.276184
PYG 8651.746755
QAR 4.04918
RON 4.973474
RSD 117.034281
RUB 101.661095
RWF 1490.428719
SAR 4.17439
SBD 9.309084
SCR 14.918942
SDG 669.022464
SEK 11.33961
SGD 1.441344
SHP 0.847052
SLE 25.412146
SLL 23323.535348
SOS 635.954632
SRD 33.090301
STD 23021.541289
SVC 9.737342
SYP 2794.587146
SZL 19.649014
THB 37.00464
TJS 11.840396
TMT 3.904033
TND 3.369592
TOP 2.613588
TRY 37.81024
TTD 7.555466
TWD 35.441098
TZS 3035.862046
UAH 46.17264
UGX 4134.231064
USD 1.11226
UYU 45.715081
UZS 14187.784086
VEF 4029221.145275
VES 40.854166
VND 27300.42755
VUV 132.04977
WST 3.111507
XAF 656.317086
XAG 0.036092
XAU 0.000431
XCD 3.005939
XDR 0.824752
XOF 656.320038
XPF 119.331742
YER 278.391045
ZAR 19.604591
ZMK 10011.678031
ZMW 29.406134
ZWL 358.147343
  • RYCEF

    0.0300

    6.59

    +0.46%

  • CMSC

    -0.0800

    25.03

    -0.32%

  • GSK

    0.4850

    43.495

    +1.12%

  • RBGPF

    5.1600

    62.16

    +8.3%

  • RELX

    0.3450

    48.055

    +0.72%

  • RIO

    0.6250

    63.175

    +0.99%

  • AZN

    0.5050

    78.775

    +0.64%

  • VOD

    0.1800

    10.35

    +1.74%

  • BTI

    0.1850

    39.355

    +0.47%

  • BP

    0.3750

    32.215

    +1.16%

  • CMSD

    -0.0500

    25.05

    -0.2%

  • SCS

    0.2250

    14.015

    +1.61%

  • BCC

    -0.7800

    135.08

    -0.58%

  • BCE

    -0.2061

    34.46

    -0.6%

  • JRI

    0.1000

    13.29

    +0.75%

  • NGG

    0.6500

    70.25

    +0.93%

Scientists pinpoint dino-killing asteroid's origin: past Jupiter
Scientists pinpoint dino-killing asteroid's origin: past Jupiter / Photo: Philippe CLAEYS - EUREKALERT!/AFP

Scientists pinpoint dino-killing asteroid's origin: past Jupiter

An intense debate surrounding the cosmic rock that killed the dinosaurs has stirred scientists for decades, but a new study has revealed some important -- and far-out -- data about the impactor's origin story.

Text size:

Researchers, whose findings were published Thursday in the journal Science, used an innovative technique to demonstrate that the apocalyptic culprit which slammed into the Earth's surface 66 million years ago, causing the most recent mass extinction, had formed beyond Jupiter's orbit.

They also refute the idea that it was a comet.

The new insights into the apparent asteroid that cratered into Chicxulub, in what is present-day Mexico's Yucatan Peninsula, could improve the understanding of celestial objects that have struck our planet.

"Now we can, with all this knowledge... say that this asteroid initially formed beyond Jupiter," Mario Fischer-Godde, lead author of the study and a geochemist at the University of Cologne, told AFP.

The conclusions are particularly notable, given how rarely this type of asteroid collides with Earth.

Such information may well prove useful in assessing future threats, or determining how water arrived on this planet, Fischer-Godde said.

- Samples -

The new findings are based on analysis of sediment samples formed at the period between the Cretaceous and Paleogene eras, the time of the asteroid's cataclysmic impact.

Researchers measured the isotopes of the element ruthenium, not uncommon on asteroids but extremely rare on Earth. So by inspecting the deposits in multiple geological layers that mark the debris from the impact at Chicxulub, they could be sure that the ruthenium studied came "100 percent from this asteroid."

"Our lab in Cologne is one of the rare labs that can do these measurements," and it was the first time such study techniques were used on impact debris layers, Fischer-Godde said.

Ruthenium isotopes can be used to distinguish between the two main groups of asteroids: C-type, or carbonaceous, asteroids that formed in the outer solar system, and S-type silicate asteroids from the inner solar system, nearer the sun.

The study affirms that the asteroid that triggered a mega-earthquake, precipitated a global winter and wiped out the dinosaurs and most other life, was a C-type asteroid that formed beyond Jupiter.

Studies from two decades ago had already made such an assumption, but with far less certainty.

The conclusions are striking, because most meteorites -- pieces of asteroids that fall to Earth -- are S-types, Fischer-Godde pointed out.

Does that mean the Chicxulub impactor formed beyond Jupiter and made a beeline for our planet? Not necessarily.

"We cannot be really sure where the asteroid was kind of hiding just before it impacted on Earth," Fischer-Godde said, adding that after its formation, it may have made a stopover in the asteroid belt, located between Mars and Jupiter and where most meteorites originate.

- Not a comet -

The study also dismisses the idea that the destructive impactor was a comet, an amalgam of icy rock from the very edge of the solar system. Such a hypothesis was put forward in a much-publicized study in 2021, based on statistical simulations.

Sample analyses now show that the celestial object was far different in composition from a subset of meteorites which are believed to have been comets in the past. It is therefore "unlikely" the impactor in question was a comet, Fischer-Godde said.

As to the wider usefulness of his findings, the geochemist offered two suggestions.

He believes that more accurately defining the nature of asteroids that have struck Earth since its beginnings some 4.5 billion years ago could help solve the enigma of the origin of our planet's water.

Scientists believe water may have been brought to Earth by asteroids, likely of the C-type like the one that struck 66 million years ago, even though they are less frequent.

Studying past asteroids also allows humanity to prepare for the future, Fischer-Godde said.

"If we find that earlier mass extinction events could also be related to C-type asteroid impacts, then... if there's ever going to be C-type asteroid on an Earth-crossing orbit, we have to be very careful," he said, "because it might be the last one we witness."

(Y.Berger--BBZ)