Berliner Boersenzeitung - China's underground lab seeks answer to deep scientific riddle

EUR -
AED 3.826681
AFN 70.961758
ALL 98.138602
AMD 405.652886
ANG 1.877182
AOA 951.190259
ARS 1045.720247
AUD 1.602814
AWG 1.877897
AZN 1.775245
BAM 1.955573
BBD 2.102956
BDT 124.465544
BGN 1.955294
BHD 0.392554
BIF 3076.642669
BMD 1.041829
BND 1.403837
BOB 7.197164
BRL 6.043693
BSD 1.041579
BTN 87.914489
BWP 14.229347
BYN 3.408604
BYR 20419.848375
BZD 2.099456
CAD 1.456529
CDF 2991.091432
CHF 0.930957
CLF 0.036923
CLP 1018.83097
CNY 7.54601
CNH 7.562783
COP 4573.368835
CRC 530.538382
CUC 1.041829
CUP 27.608468
CVE 110.252195
CZK 25.343745
DJF 185.478458
DKK 7.457729
DOP 62.772709
DZD 139.835759
EGP 51.726992
ERN 15.627435
ETB 127.508391
FJD 2.371151
FKP 0.822333
GBP 0.831435
GEL 2.855018
GGP 0.822333
GHS 16.456089
GIP 0.822333
GMD 73.970229
GNF 8977.957272
GTQ 8.040066
GYD 217.904692
HKD 8.110066
HNL 26.320943
HRK 7.431636
HTG 136.72412
HUF 411.522823
IDR 16610.452733
ILS 3.856892
IMP 0.822333
INR 87.968134
IQD 1364.44153
IRR 43834.955489
ISK 145.523076
JEP 0.822333
JMD 165.930728
JOD 0.738765
JPY 161.244275
KES 134.884334
KGS 90.122166
KHR 4193.512952
KMF 492.268155
KPW 937.645704
KRW 1463.259646
KWD 0.320727
KYD 0.867999
KZT 520.059599
LAK 22878.342838
LBP 93271.167197
LKR 303.144792
LRD 187.998165
LSL 18.795317
LTL 3.076251
LVL 0.630192
LYD 5.086409
MAD 10.478083
MDL 18.997794
MGA 4861.435378
MKD 61.522855
MMK 3383.819949
MNT 3540.134882
MOP 8.35093
MRU 41.443187
MUR 48.810083
MVR 16.10707
MWK 1806.090235
MXN 21.283008
MYR 4.654932
MZN 66.583684
NAD 18.795317
NGN 1767.675143
NIO 38.325549
NOK 11.53576
NPR 140.663663
NZD 1.785942
OMR 0.400943
PAB 1.041579
PEN 3.949541
PGK 4.193513
PHP 61.404399
PKR 289.239507
PLN 4.337676
PYG 8131.055634
QAR 3.798559
RON 4.978071
RSD 116.991412
RUB 108.671879
RWF 1421.834864
SAR 3.911473
SBD 8.734231
SCR 14.272055
SDG 626.663972
SEK 11.497837
SGD 1.402931
SHP 0.822333
SLE 23.68116
SLL 21846.638123
SOS 595.230868
SRD 36.978718
STD 21563.75683
SVC 9.113941
SYP 2617.626467
SZL 18.788818
THB 35.922648
TJS 11.092512
TMT 3.646401
TND 3.309016
TOP 2.440072
TRY 35.9978
TTD 7.074178
TWD 33.946439
TZS 2770.578216
UAH 43.089995
UGX 3848.553017
USD 1.041829
UYU 44.294855
UZS 13362.448044
VES 48.506662
VND 26482.251319
VUV 123.688032
WST 2.90836
XAF 655.880824
XAG 0.033274
XAU 0.000384
XCD 2.815595
XDR 0.792308
XOF 655.880824
XPF 119.331742
YER 260.379151
ZAR 18.915093
ZMK 9377.71492
ZMW 28.772658
ZWL 335.468513
  • SCS

    0.2300

    13.27

    +1.73%

  • BCC

    3.4200

    143.78

    +2.38%

  • RBGPF

    59.2400

    59.24

    +100%

  • GSK

    0.2600

    33.96

    +0.77%

  • RIO

    -0.2200

    62.35

    -0.35%

  • CMSC

    0.0320

    24.672

    +0.13%

  • AZN

    1.3700

    65.63

    +2.09%

  • NGG

    1.0296

    63.11

    +1.63%

  • CMSD

    0.0150

    24.46

    +0.06%

  • RELX

    0.9900

    46.75

    +2.12%

  • BCE

    0.0900

    26.77

    +0.34%

  • VOD

    0.1323

    8.73

    +1.52%

  • JRI

    -0.0200

    13.21

    -0.15%

  • BP

    0.2000

    29.72

    +0.67%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • BTI

    0.4000

    37.38

    +1.07%

China's underground lab seeks answer to deep scientific riddle
China's underground lab seeks answer to deep scientific riddle / Photo: Jade GAO - AFP

China's underground lab seeks answer to deep scientific riddle

Far beneath the lush landscape of southern China, a sprawling subterranean laboratory aims to be the world's first to crack a deep scientific enigma.

Text size:

China has emerged as a science powerhouse in recent years, with the country's Communist leadership ploughing billions of dollars into advanced research to contend with the United States and other rivals.

Its latest showpiece is the Jiangmen Underground Neutrino Observatory (Juno), a state-of-the-art facility for studying the minuscule subatomic particles.

The project is an "exciting" opportunity to delve into some of the universe's most fundamental -- but elusive -- building blocks, according to Patrick Huber, director of the Center for Neutrino Physics at the American university Virginia Tech, who is not involved in the facility's research.

AFP recently joined an international media tour of the observatory in Kaiping, Guangdong province, organised by the Chinese Academy of Sciences, the country's national science agency.

The lab is reached by a funicular train that travels down a tunnel to a cavern built 700 metres (2,300 feet) underground to limit radiation emissions.

Inside stands the neutrino detector, a stainless steel and acrylic sphere around 35 metres in diameter, crisscrossed by cables.

"No one has built such a detector before," Wang Yifang, Juno's project manager and director of the Institute of High Energy Physics, said as workers in hard hats applied the finishing touches to the gleaming orb.

"You can see from the scale, it was technologically complicated," Wang said as he waved a laser pen over different parts of the installation.

Started in 2014, Juno has cost around 2.2 billion yuan ($311 million) to build and is due for completion next year.

It aims to solve a fundamental physics puzzle about the particles' nature faster than scientists in the United States, a world leader in the field.

Its research could also help us better understand planet Earth, the Sun, and other stars and supernovas.

- 'Second means nothing' -

Neutrinos are elementary particles that exist all around us and move close to the speed of light.

Physicists have known about them for decades but still lack in-depth knowledge of how they work.

Researchers will use Juno to detect neutrinos emitted by two Chinese nuclear power plants, each located 53 kilometres (33 miles) away.

They will then use the data to tackle something called the "mass hierarchy" problem, believed to be crucial for improving theories of particle physics.

Scientists already know that neutrinos come in three different mass states, but they don't know which is the heaviest and which is the lightest.

Solving that problem could help them better understand the standard model of particle physics, allowing them in turn to learn more about the past and future of the universe.

"(The project) will deeply test our understanding of neutrino oscillation and quantum mechanics," said Huber of Virginia Tech.

"If it turns out that Juno shows our (current) understanding is wrong, then that would be a revolution."

Wang, the project manager, said researchers were confident they would "get the result of mass hierarchy ahead of everybody".

In fundamental science, he said with a smile, being "the first means everything, and the second means nothing".

- Superpower tensions -

Scientists estimate that six years of data will be needed to crack the mass hierarchy question.

And although similar experiments will take place in the US and Japan in the coming years, Juno is "ahead in the race", said Jennifer Thomas, a physicist at University College London who also sits on the project's International Scientific Committee.

Around 750 scientists from 17 countries are taking part in the collaboration, including "two American groups", according to Wang.

More are interested in joining, he added, "but unfortunately, because of the many well known reasons... they are not allowed to".

As US-China competition over science and technology heats up, Washington has investigated US-based academics of Chinese origin for spying or stealing intellectual property, and it has encouraged domestic institutions to loosen ties with Chinese counterparts.

Beijing, for its part, has been accused by Western governments and international organisations of restricting access to certain data and hindering enquiries into sensitive topics, like the origins of Covid-19.

But one American scholar and member of Juno said he was looking forward to working on the "unique" project.

"We're not completely numb to the political situation, because there can sometimes be difficulties (for researchers) in obtaining visas" and navigating stricter bureaucratic hurdles, Juan Pedro Ochoa-Ricoux, an experimental physicist at the University of California, Irvine, told AFP.

He said such problems "affect both sides, perhaps our Chinese colleagues even more than us in the US".

But, he said, "by working together, we also show how science can and must be apolitical".

(L.Kaufmann--BBZ)