Berliner Boersenzeitung - Tracing uncertainty: Google harnesses quantum mechanics at California lab

EUR -
AED 3.847878
AFN 71.355775
ALL 98.683518
AMD 407.90528
ANG 1.887605
AOA 956.471645
ARS 1045.95529
AUD 1.603226
AWG 1.888324
AZN 1.781822
BAM 1.966431
BBD 2.114632
BDT 125.156641
BGN 1.966151
BHD 0.394734
BIF 3093.725774
BMD 1.047614
BND 1.411632
BOB 7.237126
BRL 6.077208
BSD 1.047362
BTN 88.402636
BWP 14.308356
BYN 3.42753
BYR 20533.229892
BZD 2.111113
CAD 1.462317
CDF 3007.698713
CHF 0.934451
CLF 0.037128
CLP 1024.488044
CNY 7.587893
CNH 7.587411
COP 4598.762534
CRC 533.484204
CUC 1.047614
CUP 27.761765
CVE 110.864372
CZK 25.355423
DJF 186.50833
DKK 7.465217
DOP 63.121256
DZD 140.612199
EGP 51.738619
ERN 15.714207
ETB 128.216383
FJD 2.384317
FKP 0.826899
GBP 0.833093
GEL 2.870782
GGP 0.826899
GHS 16.547461
GIP 0.826899
GMD 74.380234
GNF 9027.807516
GTQ 8.084709
GYD 219.114611
HKD 8.154522
HNL 26.46709
HRK 7.4729
HTG 137.483283
HUF 411.178923
IDR 16702.682523
ILS 3.88451
IMP 0.826899
INR 88.456578
IQD 1372.017612
IRR 44078.349107
ISK 146.33087
JEP 0.826899
JMD 166.852061
JOD 0.742864
JPY 161.438289
KES 135.633281
KGS 90.645526
KHR 4216.797496
KMF 495.000342
KPW 942.851996
KRW 1471.38375
KWD 0.322508
KYD 0.872819
KZT 522.947237
LAK 23005.375183
LBP 93789.056763
LKR 304.828008
LRD 189.042028
LSL 18.899678
LTL 3.093331
LVL 0.633691
LYD 5.114652
MAD 10.536263
MDL 19.103279
MGA 4888.428571
MKD 61.864461
MMK 3402.60866
MNT 3559.791534
MOP 8.397299
MRU 41.673301
MUR 49.080863
MVR 16.196605
MWK 1816.118578
MXN 21.342527
MYR 4.680756
MZN 66.953146
NAD 18.899678
NGN 1777.488252
NIO 38.538352
NOK 11.546605
NPR 141.4447
NZD 1.789386
OMR 0.40317
PAB 1.047362
PEN 3.971471
PGK 4.216797
PHP 61.745272
PKR 290.845514
PLN 4.335303
PYG 8176.203443
QAR 3.81965
RON 5.007898
RSD 117.641009
RUB 108.641335
RWF 1429.729623
SAR 3.933191
SBD 8.782728
SCR 14.351263
SDG 630.139998
SEK 11.502008
SGD 1.409512
SHP 0.826899
SLE 23.812353
SLL 21967.941912
SOS 598.535896
SRD 37.184018
STD 21683.489915
SVC 9.164547
SYP 2632.160877
SZL 18.893143
THB 36.239583
TJS 11.154103
TMT 3.666648
TND 3.327389
TOP 2.45362
TRY 36.218968
TTD 7.113458
TWD 34.134924
TZS 2785.961894
UAH 43.329253
UGX 3869.922166
USD 1.047614
UYU 44.540803
UZS 13436.643239
VES 48.775996
VND 26629.29442
VUV 124.374812
WST 2.924509
XAF 659.522612
XAG 0.033459
XAU 0.000386
XCD 2.831229
XDR 0.796707
XOF 659.522612
XPF 119.331742
YER 261.824842
ZAR 18.888413
ZMK 9429.782938
ZMW 28.932419
ZWL 337.331207
  • RIO

    -0.2200

    62.35

    -0.35%

  • SCS

    0.2300

    13.27

    +1.73%

  • BCC

    3.4200

    143.78

    +2.38%

  • CMSC

    0.0320

    24.672

    +0.13%

  • NGG

    1.0296

    63.11

    +1.63%

  • JRI

    -0.0200

    13.21

    -0.15%

  • CMSD

    0.0150

    24.46

    +0.06%

  • BCE

    0.0900

    26.77

    +0.34%

  • RELX

    0.9900

    46.75

    +2.12%

  • BTI

    0.4000

    37.38

    +1.07%

  • VOD

    0.1323

    8.73

    +1.52%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • GSK

    0.2600

    33.96

    +0.77%

  • BP

    0.2000

    29.72

    +0.67%

  • AZN

    1.3700

    65.63

    +2.09%

  • RBGPF

    59.2400

    59.24

    +100%

Tracing uncertainty: Google harnesses quantum mechanics at California lab
Tracing uncertainty: Google harnesses quantum mechanics at California lab / Photo: Frederic J. BROWN - AFP

Tracing uncertainty: Google harnesses quantum mechanics at California lab

Outside, balmy September sunshine warms an idyllic coast, as California basks in yet another perfect day.

Text size:

Inside, it's minus 460 Fahrenheit (-273 Celsius) in some spots, pockets of cold that bristle with the impossible physics of quantum mechanics -- a science in which things can simultaneously exist, not exist and also be something in between.

This is Google's Quantum AI laboratory, where dozens of super-smart people labor in an office kitted out with climbing walls and electric bikes to shape the next generation of computers -- a generation that will be unlike anything users currently have in their pockets or offices.

"It is a new type of computer that uses quantum mechanics to do computations and allows us... to solve problems that would otherwise be impossible," explains Erik Lucero, lead engineer at the campus near Santa Barbara.

"It's not going to replace your mobile phone, your desktop; it's going to be working in parallel with those things."

Quantum mechanics is a field of research that scientists say could be used one day to help limit global warming, design city traffic systems or develop powerful new drugs.

The promises are so great that governments, tech giants and start-ups around the world are investing billions of dollars in it, employing some of the biggest brains around.

- Schrodinger's cat -

Old fashioned computing is built on the idea of binary certainty: tens of thousands of "bits" of data that are each definitely either "on" or "off," represented by either a one or a zero.

Quantum computing uses uncertainty: its "qubits" can exist in a state of both one-ness and zero-ness in what is called a superposition.

The most famous illustration of a quantum superposition is Schrodinger's cat -- a hypothetical animal locked in a box with a flask of poison which may or may not shatter.

While the box is shut, the cat is simultaneously alive and dead. But once you interfere with the quantum state and open the box, the question of the cat's life or death is resolved.

Quantum computers use this uncertainty to perform lots of seemingly contradictory calculations at the same time -- a bit like being able to go down every possible route in a maze all at once, instead of trying each one in series until you find the right path.

The difficulty for quantum computer designers is getting these qubits to maintain their superposition long enough to make a calculation.

As soon as something interferes with them -- noise, muck, the wrong temperature -- the superposition collapses, and you're left with a random and likely nonsensical answer.

The quantum computer Google showed off to journalists resembles a steampunk wedding cake hung upside-down from a support structure.

Each layer of metal and curved wires gets progressively colder, down to the final stage, where the palm-sized processor is cooled to just 10 Millikelvin, or about -460 Fahrenheit (-273 Celsius).

That temperature -- only a shade above absolute zero, the lowest temperature possible in the universe -- is vital for the superconductivity Google's design relies on.

While the layer-cake computer is not huge -- about half a person high -- a decent amount of lab space is taken up with the equipment to cool it -- pipes whoosh overhead with helium dilutions compressing and expanding, using the same process that keeps your refrigerator cold.

- Future -

But... what does it all actually do?

Well, says Daniel Lidar, an expert in quantum systems at the University of Southern California, it's a field that promises much when it matures, but which is still a toddler.

"We've learned how to crawl but we've certainly not yet learned how to how to walk or jump or run," he told AFP.

The key to its growth will be solving the problem of the superpositional collapses -- the opening of the cat's box -- to allow for meaningful calculations.

As this process of error correction improves, problems such as city traffic optimization, which is fiendishly hard on a classical computer because of the number of independent variables involved -- the cars themselves -- could come within reach, said Lidar.

"On (an error-corrected) quantum computer, you could solve that problem," he said.

For Lucero and his colleagues, these future possibilities are worth the brain ache.

"Quantum mechanics is one of the best theories that we have today to experience nature. This is a computer that speaks the language of nature.

"And if we want to go out and figure out these really challenging problems, to help save our planet, and things like climate change, than having a computer that can do exactly that, I'd want that."

(L.Kaufmann--BBZ)