Berliner Boersenzeitung - Webb telescope spots its first star -- and takes a selfie

EUR -
AED 4.177023
AFN 80.542045
ALL 98.683768
AMD 442.285799
ANG 2.049618
AOA 1041.702569
ARS 1324.878702
AUD 1.779563
AWG 2.049857
AZN 1.928482
BAM 1.95703
BBD 2.295583
BDT 138.136833
BGN 1.955408
BHD 0.428625
BIF 3381.585135
BMD 1.13723
BND 1.48546
BOB 7.856076
BRL 6.386457
BSD 1.136935
BTN 96.083933
BWP 15.564057
BYN 3.720704
BYR 22289.70531
BZD 2.283776
CAD 1.57288
CDF 3272.947154
CHF 0.938555
CLF 0.028107
CLP 1078.605939
CNY 8.26709
CNH 8.266285
COP 4772.953734
CRC 574.271086
CUC 1.13723
CUP 30.136591
CVE 110.330473
CZK 24.917614
DJF 202.460827
DKK 7.465163
DOP 66.913238
DZD 150.710227
EGP 57.75911
ERN 17.058448
ETB 152.577193
FJD 2.571304
FKP 0.848829
GBP 0.851569
GEL 3.12165
GGP 0.848829
GHS 16.201469
GIP 0.848829
GMD 81.302394
GNF 9846.843381
GTQ 8.755658
GYD 238.58417
HKD 8.820844
HNL 29.504584
HRK 7.532667
HTG 148.535982
HUF 404.082221
IDR 18899.338782
ILS 4.120748
IMP 0.848829
INR 96.139712
IQD 1489.362406
IRR 47877.37689
ISK 145.894685
JEP 0.848829
JMD 179.983137
JOD 0.806634
JPY 162.661965
KES 147.191951
KGS 99.450559
KHR 4550.940757
KMF 491.567639
KPW 1023.463987
KRW 1617.538411
KWD 0.348481
KYD 0.947512
KZT 583.452149
LAK 24580.883839
LBP 101869.326599
LKR 340.339923
LRD 227.386934
LSL 21.17018
LTL 3.357945
LVL 0.687899
LYD 6.205901
MAD 10.538295
MDL 19.515611
MGA 5048.26212
MKD 61.554749
MMK 2387.491007
MNT 4063.63985
MOP 9.08397
MRU 44.991843
MUR 51.357461
MVR 17.509108
MWK 1971.47394
MXN 22.20851
MYR 4.907169
MZN 72.794414
NAD 21.170552
NGN 1822.433714
NIO 41.837035
NOK 11.805049
NPR 153.739428
NZD 1.921663
OMR 0.437835
PAB 1.136935
PEN 4.168594
PGK 4.642081
PHP 63.534744
PKR 319.450224
PLN 4.27479
PYG 9105.964224
QAR 4.143951
RON 4.978227
RSD 117.275782
RUB 92.402801
RWF 1633.255388
SAR 4.265468
SBD 9.508717
SCR 16.165728
SDG 682.908112
SEK 10.964954
SGD 1.485483
SHP 0.893684
SLE 25.872112
SLL 23847.123141
SOS 649.71984
SRD 41.907169
STD 23538.362101
SVC 9.947903
SYP 14785.591368
SZL 21.151668
THB 38.005794
TJS 11.983243
TMT 3.991677
TND 3.376756
TOP 2.663509
TRY 43.7553
TTD 7.700976
TWD 36.428316
TZS 3064.834456
UAH 47.163906
UGX 4164.764459
USD 1.13723
UYU 47.838389
UZS 14704.631239
VES 98.425096
VND 29573.662581
VUV 136.933175
WST 3.148306
XAF 656.381145
XAG 0.035253
XAU 0.000347
XCD 3.073421
XDR 0.815087
XOF 656.369594
XPF 119.331742
YER 278.677643
ZAR 21.111763
ZMK 10236.430299
ZMW 31.635442
ZWL 366.187552
  • CMSC

    -0.1400

    22.1

    -0.63%

  • SCS

    -0.1850

    9.825

    -1.88%

  • BP

    -0.3240

    27.746

    -1.17%

  • BTI

    0.6050

    43.465

    +1.39%

  • RIO

    -1.8800

    59

    -3.19%

  • AZN

    -0.2000

    71.51

    -0.28%

  • GSK

    0.7200

    39.69

    +1.81%

  • NGG

    -0.4700

    72.57

    -0.65%

  • BCC

    -3.4900

    91.01

    -3.83%

  • RBGPF

    -0.4500

    63

    -0.71%

  • JRI

    -0.1560

    12.774

    -1.22%

  • BCE

    -0.1700

    21.75

    -0.78%

  • CMSD

    -0.1620

    22.188

    -0.73%

  • RELX

    0.0390

    53.829

    +0.07%

  • RYCEF

    -0.3700

    9.88

    -3.74%

  • VOD

    0.0700

    9.65

    +0.73%

Webb telescope spots its first star -- and takes a selfie
Webb telescope spots its first star -- and takes a selfie

Webb telescope spots its first star -- and takes a selfie

Star light, star bright, the James Webb Space Telescope has seen its first star (though it wasn't quite tonight) -- and even taken a selfie, NASA announced Friday.

Text size:

The steps are part of the months-long process of aligning the observatory's enormous golden mirror that astronomers hope will begin unraveling the mysteries of the early Universe by this summer.

The first picture sent back of the cosmos is far from stunning: 18 blurry white dots on a black background, all showing the same object: HD 84406 a bright, isolated star in the constellation Ursa Major.

But in fact it represents a major milestone. The 18 dots were captured by the primary mirror's 18 individual segments -- and the image is now the basis for aligning and focusing those hexagonal pieces.

The light bounced off the segments to Webb's secondary mirror, a round object located at the end of long booms, and then to the Near Infrared Camera (NIRCam) instrument -- Webb's main imaging device.

"The entire Webb team is ecstatic at how well the first steps of taking images and aligning the telescope are proceeding," said Marcia Rieke, principal investigator for the NIRCam instrument and regents professor of astronomy, University of Arizona, in a statement.

"We were so happy to see that light make its way into NIRCam."

The image capturing process began on February 2, with Webb pointing at different positions around the predicted location of the star.

Though Webb's initial search covered an area of the sky about equal to the size of the full Moon, the dots were all located near the center portion, meaning the observatory is already relatively well positioned for final alignment.

To aid the process, the team also captured a "selfie" taken not through an externally mounted camera but through a special lens on board NIRCam.

NASA had previously said a selfie wasn't possible, so the news comes as a welcome bonus for space fans.

"I think pretty much the reaction was holy cow," Lee Feinberg, Webb optical telescope element manager, told reporters in a call, explaining that the team wasn't sure it was possible to obtain such an image using starlight alone.

The $10 billion observatory launched from French Guiana on December 25 and is now in an orbit that is aligned with the Earth's around the Sun, one million miles (1.5 million kilometers away) from our planet, in a region of space called the second Lagrange point.

Webb will begin its science mission by summer, which includes using its high resolution instruments to peer back in time 13.5 billion years to the first generation of galaxies that formed after the Big Bang.

Visible and ultraviolet light emitted by the very first luminous objects has been stretched by the Universe's expansion, and arrives today in the form of infrared, which Webb is equipped to detect with unprecedented clarity.

Its mission also includes the study of distant planets, known as exoplanets, to determine their origin, evolution and habitability.

(T.Renner--BBZ)