Berliner Boersenzeitung - Nobel physics winner wanted to topple quantum theory he vindicated

EUR -
AED 3.849023
AFN 71.377105
ALL 98.713018
AMD 408.027217
ANG 1.888169
AOA 956.757159
ARS 1045.773778
AUD 1.6014
AWG 1.888888
AZN 1.790592
BAM 1.967019
BBD 2.115265
BDT 125.194055
BGN 1.966739
BHD 0.394852
BIF 3094.650597
BMD 1.047927
BND 1.412054
BOB 7.23929
BRL 6.078989
BSD 1.047676
BTN 88.429063
BWP 14.312633
BYN 3.428555
BYR 20539.367995
BZD 2.111745
CAD 1.460103
CDF 3008.598175
CHF 0.933105
CLF 0.03714
CLP 1024.7943
CNY 7.590121
CNH 7.588128
COP 4600.137266
CRC 533.643681
CUC 1.047927
CUP 27.770064
CVE 110.897513
CZK 25.354598
DJF 186.564084
DKK 7.458169
DOP 63.140125
DZD 140.654233
EGP 51.730874
ERN 15.718904
ETB 128.254711
FJD 2.385029
FKP 0.827147
GBP 0.832195
GEL 2.871238
GGP 0.827147
GHS 16.552408
GIP 0.827147
GMD 74.40309
GNF 9030.506244
GTQ 8.087126
GYD 219.180112
HKD 8.156576
HNL 26.475002
HRK 7.475134
HTG 137.524382
HUF 411.442327
IDR 16707.675541
ILS 3.888244
IMP 0.827147
INR 88.48302
IQD 1372.427756
IRR 44091.525793
ISK 146.374379
JEP 0.827147
JMD 166.901939
JOD 0.743084
JPY 161.400652
KES 135.673827
KGS 90.645742
KHR 4218.058045
KMF 495.144769
KPW 943.133847
KRW 1471.823666
KWD 0.322605
KYD 0.87308
KZT 523.103565
LAK 23012.252297
LBP 93817.093604
LKR 304.919132
LRD 189.098539
LSL 18.905328
LTL 3.094256
LVL 0.633881
LYD 5.116181
MAD 10.539412
MDL 19.10899
MGA 4889.889894
MKD 61.882955
MMK 3403.625819
MNT 3560.855681
MOP 8.399809
MRU 41.685758
MUR 49.095582
MVR 16.200603
MWK 1816.66148
MXN 21.338895
MYR 4.68214
MZN 66.973076
NAD 18.905328
NGN 1778.018417
NIO 38.549872
NOK 11.531786
NPR 141.486983
NZD 1.787143
OMR 0.40329
PAB 1.047676
PEN 3.972658
PGK 4.218058
PHP 61.763748
PKR 290.932457
PLN 4.335792
PYG 8178.647597
QAR 3.820792
RON 5.009395
RSD 117.676176
RUB 108.684182
RWF 1430.15702
SAR 3.934367
SBD 8.785353
SCR 14.355505
SDG 630.325516
SEK 11.490398
SGD 1.407224
SHP 0.827147
SLE 23.819044
SLL 21974.508901
SOS 598.71482
SRD 37.195159
STD 21689.971872
SVC 9.167286
SYP 2632.947722
SZL 18.898791
THB 36.095812
TJS 11.157437
TMT 3.667744
TND 3.328384
TOP 2.454353
TRY 36.229795
TTD 7.115584
TWD 34.145125
TZS 2786.794716
UAH 43.342206
UGX 3871.079021
USD 1.047927
UYU 44.554118
UZS 13440.659923
VES 48.790577
VND 26637.254851
VUV 124.411992
WST 2.925383
XAF 659.719767
XAG 0.033387
XAU 0.000385
XCD 2.832075
XDR 0.796945
XOF 659.719767
XPF 119.331742
YER 261.90314
ZAR 18.881343
ZMK 9432.600526
ZMW 28.941068
ZWL 337.432047
  • SCS

    0.2300

    13.27

    +1.73%

  • BCC

    3.4200

    143.78

    +2.38%

  • BCE

    0.0900

    26.77

    +0.34%

  • GSK

    0.2600

    33.96

    +0.77%

  • NGG

    1.0296

    63.11

    +1.63%

  • RIO

    -0.2200

    62.35

    -0.35%

  • JRI

    -0.0200

    13.21

    -0.15%

  • CMSC

    0.0320

    24.672

    +0.13%

  • CMSD

    0.0150

    24.46

    +0.06%

  • BTI

    0.4000

    37.38

    +1.07%

  • RBGPF

    59.2400

    59.24

    +100%

  • BP

    0.2000

    29.72

    +0.67%

  • AZN

    1.3700

    65.63

    +2.09%

  • VOD

    0.1323

    8.73

    +1.52%

  • RELX

    0.9900

    46.75

    +2.12%

  • RYCEF

    -0.0100

    6.79

    -0.15%

Nobel physics winner wanted to topple quantum theory he vindicated
Nobel physics winner wanted to topple quantum theory he vindicated / Photo: Remi Vorano - AFP

Nobel physics winner wanted to topple quantum theory he vindicated

American physicist John Clauser won the 2022 Nobel Prize for a groundbreaking experiment vindicating quantum mechanics -- a fundamental theory governing the subatomic world that is today the foundation for an emerging class of ultra-powerful computers.

Text size:

But when he carried out his work in the 1970s, Clauser was actually hoping for the opposite result: to upend the field and prove Albert Einstein had been right to dismiss it, he told AFP in an interview.

"The truth is that I strongly hoped that Einstein would win, which would mean that quantum mechanics was giving incorrect predictions," the 79-year-old said, speaking by telephone from his home in Walnut Creek, just outside San Francisco.

Born in Pasadena in 1942, Clauser credits his father, an engineer who designed planes in the war and founded the aeronautics department at Johns Hopkins University in Baltimore, for instilling in him a lifelong love of science.

"I used to wander around his laboratory and say 'Wow, oh boy, when I grow up I want to be a scientist so I can play with these fun toys too.'"

As a graduate student at Columbia in the mid-1960s, he grew interested in quantum physics alongside his thesis work on radio astronomy.

- Quantum entanglement -

According to quantum mechanics, two or more particles can exist in what's called an entangled state -- what happens to one in an entangled pair determines what happens to the other, no matter their distance.

The fact that this occurred instantly contradicted Einstein's theory of relativity which held that nothing -- including information -- can travel faster than the speed of light.

In 1935 he dismissed this element of quantum entanglement -- called nonlocality -- as "spooky action at a distance."

Einstein instead believed that "hidden variables" that instructed the particles what state to take must be at play, placing him at odds with his great friend but intellectual adversary Niels Bohr, a founding father of quantum theory.

In 1964, the Northern Irish physicist John Bell proposed a theoretical way to measure whether there were in fact hidden variables inside quantum particles. Clauser realized he could resolve the long standing Bohr-Einstein debate if he could create the right experiment.

"My thesis advisor thought it was a distraction from my work in astrophysics," he recalled, but undeterred, he wrote to Bell, who encouraged him to take up the idea.

It wasn't until Clauser had completed his doctorate and taken up a job at UC Berkeley that he was actually able to start working on the experiment, along with collaborator Stuart Freedman.

They focused a laser on calcium atoms, making it emit particles of entangled photon pairs that shot off in opposite directions, and used filters set to the side to measure whether they were correlated.

After hundreds of thousands of runs, they found the pairs correlated more than Einstein would have predicted, proving the reality of "spooky action" with hard data.

At the time, leading lights of the field were unimpressed, said Clauser, including the renowned physicist Richard Feynman who told him the work was "totally silly, you're wasting everybody's time and money" and threw him out his office.

Questioning the foundation of quantum mechanics was deemed unnecessary.

- Quantum computing -

That wasn't the view of the Nobel committee, who awarded Clauser, Alain Aspect of France, and Anton Zeilinger of Austria the world's most prestigious science prize for their pioneering work in advancing the field.

"It took a long time for people to realize the importance of the work," chuckled Clauser.

"But I suppose it is a certain vindication, everyone was telling me it was silly."

Einstein's theory had more appeal to Clauser than Bohr's, which he confessed to not fully grasping.

But over time, he came to realize the true value of his and his co-winners' experiments. Demonstrating that a single bit of information can be distributed through space is today at the core of quantum computers.

Clauser pointed to China's quantum-encrypted Micius communications satellite, which relies on entangled photons thousands of kilometers apart.

"We did not prove what quantum mechanics is -- we proved what quantum mechanics isn't," he said, "and knowing what it is not then has practical applications."

(B.Hartmann--BBZ)