Berliner Boersenzeitung - Human brain cells implanted in rats offer research gold mine

EUR -
AED 3.850375
AFN 71.007285
ALL 98.201564
AMD 408.172647
ANG 1.878386
AOA 957.098007
ARS 1045.872072
AUD 1.604869
AWG 1.889562
AZN 1.779904
BAM 1.956809
BBD 2.104325
BDT 124.544208
BGN 1.968551
BHD 0.392806
BIF 3078.616524
BMD 1.0483
BND 1.404738
BOB 7.24187
BRL 6.086226
BSD 1.042247
BTN 88.460581
BWP 14.238612
BYN 3.410823
BYR 20546.688681
BZD 2.100823
CAD 1.461105
CDF 3009.671132
CHF 0.9326
CLF 0.036947
CLP 1019.484612
CNY 7.593157
CNH 7.597548
COP 4601.776869
CRC 530.878754
CUC 1.0483
CUP 27.779962
CVE 110.93704
CZK 25.34004
DJF 185.599225
DKK 7.456773
DOP 62.812982
DZD 139.925472
EGP 51.732528
ERN 15.724507
ETB 127.590195
FJD 2.38588
FKP 0.827441
GBP 0.832057
GEL 2.872517
GGP 0.827441
GHS 16.558308
GIP 0.827441
GMD 74.429381
GNF 8983.717181
GTQ 8.090008
GYD 219.258233
HKD 8.156883
HNL 26.33783
HRK 7.477799
HTG 136.811837
HUF 411.259269
IDR 16621.851823
ILS 3.881961
IMP 0.827441
INR 88.449668
IQD 1365.329933
IRR 44107.241094
ISK 146.394871
JEP 0.827441
JMD 166.037183
JOD 0.743352
JPY 161.121705
KES 135.724012
KGS 90.678259
KHR 4196.203348
KMF 495.323945
KPW 943.470001
KRW 1464.376148
KWD 0.322719
KYD 0.868564
KZT 520.398216
LAK 22893.239195
LBP 93331.897146
LKR 303.342173
LRD 189.165938
LSL 18.807555
LTL 3.095359
LVL 0.634107
LYD 5.089721
MAD 10.543169
MDL 19.010163
MGA 4864.600715
MKD 61.561738
MMK 3404.838947
MNT 3562.124849
MOP 8.356367
MRU 41.469775
MUR 49.11333
MVR 16.206707
MWK 1807.266202
MXN 21.344967
MYR 4.673848
MZN 66.997415
NAD 18.807555
NGN 1770.013361
NIO 38.350137
NOK 11.544016
NPR 140.753907
NZD 1.78839
OMR 0.401204
PAB 1.048049
PEN 3.952037
PGK 4.196203
PHP 61.740705
PKR 289.425072
PLN 4.332472
PYG 8136.349859
QAR 3.822154
RON 4.973557
RSD 117.765012
RUB 108.677289
RWF 1422.747058
SAR 3.935736
SBD 8.788484
SCR 14.275496
SDG 630.551352
SEK 11.497865
SGD 1.40737
SHP 0.827441
SLE 23.828224
SLL 21982.341102
SOS 595.612745
SRD 37.208405
STD 21697.702658
SVC 9.119876
SYP 2633.886163
SZL 18.801051
THB 36.153258
TJS 11.161414
TMT 3.669052
TND 3.32957
TOP 2.455227
TRY 36.242708
TTD 7.078649
TWD 34.034134
TZS 2787.788371
UAH 43.118052
UGX 3872.45876
USD 1.0483
UYU 44.569998
UZS 13370.893257
VES 48.807995
VND 26632.072752
VUV 124.456335
WST 2.926426
XAF 656.301612
XAG 0.033867
XAU 0.000389
XCD 2.833084
XDR 0.792824
XOF 656.301612
XPF 119.331742
YER 261.996486
ZAR 18.896155
ZMK 9435.963602
ZMW 28.791392
ZWL 337.552315
  • BCC

    3.4200

    143.78

    +2.38%

  • SCS

    0.2300

    13.27

    +1.73%

  • GSK

    0.2600

    33.96

    +0.77%

  • RBGPF

    59.2400

    59.24

    +100%

  • RIO

    -0.2200

    62.35

    -0.35%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • NGG

    1.0296

    63.11

    +1.63%

  • CMSD

    0.0150

    24.46

    +0.06%

  • CMSC

    0.0320

    24.672

    +0.13%

  • BCE

    0.0900

    26.77

    +0.34%

  • AZN

    1.3700

    65.63

    +2.09%

  • JRI

    -0.0200

    13.21

    -0.15%

  • BTI

    0.4000

    37.38

    +1.07%

  • RELX

    0.9900

    46.75

    +2.12%

  • VOD

    0.1323

    8.73

    +1.52%

  • BP

    0.2000

    29.72

    +0.67%

Human brain cells implanted in rats offer research gold mine
Human brain cells implanted in rats offer research gold mine / Photo: Sergiu PASCA - Stanford University/AFP

Human brain cells implanted in rats offer research gold mine

Scientists have successfully implanted and integrated human brain cells into newborn rats, creating a new way to study complex psychiatric disorders such as schizophrenia and autism, and perhaps eventually test treatments.

Text size:

Studying how these conditions develop is incredibly difficult -- animals do not experience them like people, and humans cannot simply be opened up for research.

Scientists can assemble small sections of human brain tissue derived from stem cells in petri dishes, and have already done so with more than a dozen brain regions.

But in dishes, "neurons don't grow to the size which a human neuron in an actual human brain would grow", said Sergiu Pasca, the study's lead author and professor of psychiatry and behavioural sciences at Stanford University.

And isolated from a body, they cannot tell us what symptoms a defect will cause.

To overcome those limitations, researchers implanted the groupings of human brain cells, called organoids, into the brains of young rats.

The rats' age was important: human neurons have been implanted into adult rats before, but an animal's brain stops developing at a certain age, limiting how well implanted cells can integrate.

"By transplanting them at these early stages, we found that these organoids can grow relatively large, they become vascularised (receive nutrients) by the rat, and they can cover about a third of a rat's (brain) hemisphere," Pasca said.

- Ethical dilemmas -

To test how well the human neurons integrated with the rat brains and bodies, air was puffed across the animals' whiskers, which prompted electrical activity in the human neurons.

That showed an input connection -- external stimulation of the rat's body was processed by the human tissue in the brain.

The scientists then tested the reverse: could the human neurons send signals back to the rat's body?

They implanted human brain cells altered to respond to blue light, and then trained the rats to expect a "reward" of water from a spout when blue light shone on the neurons via a cable in the animals' skulls.

After two weeks, pulsing the blue light sent the rats scrambling to the spout, according to the research published Wednesday in the journal Nature.

The team has now used the technique to show that organoids developed from patients with Timothy syndrome grow more slowly and display less electrical activity than those from healthy people.

The technique could eventually be used to test new drugs, according to J. Gray Camp of the Roche Institute for Translational Bioengineering, and Barbara Treutlein of ETH Zurich.

It "takes our ability to study human brain development, evolution and disease into uncharted territory", the pair, who were not involved in the study, wrote in a review commissioned by Nature.

The method raises potentially uncomfortable questions -- how much human brain tissue can be implanted into a rat before the animal's nature is changed? Would the method be ethical in primates?

Pasca argued that limitations on how deeply human neurons integrate with the rat brain provide "natural barriers".

Rat brains develop much faster than human ones, "so there's only so much that the rat cortex can integrate".

But in species closer to humans, those barriers might no longer exist, and Pasca said he would not support using the technique in primates for now.

He argued though that there is a "moral imperative" to find ways to better study and treat psychiatric disorders.

"Certainly the more human these models are becoming, the more uncomfortable we feel," he said.

But "human psychiatric disorders are to a large extent uniquely human. So we're going to have to think very carefully... how far we want to go with some of these models moving forward."

(T.Renner--BBZ)