Berliner Boersenzeitung - Nobel chemistry winner sees engineered proteins solving tough problems

EUR -
AED 3.849459
AFN 71.267446
ALL 97.489194
AMD 407.131662
ANG 1.888724
AOA 957.395732
ARS 1052.23996
AUD 1.608928
AWG 1.889106
AZN 1.778344
BAM 1.94835
BBD 2.115818
BDT 125.236374
BGN 1.954483
BHD 0.394975
BIF 3036.718353
BMD 1.048048
BND 1.408315
BOB 7.241313
BRL 6.09607
BSD 1.047898
BTN 88.544945
BWP 14.307296
BYN 3.429786
BYR 20541.735881
BZD 2.112523
CAD 1.463185
CDF 3007.896896
CHF 0.929362
CLF 0.036978
CLP 1020.337634
CNY 7.58493
CNH 7.60312
COP 4601.977666
CRC 532.714856
CUC 1.048048
CUP 27.773265
CVE 110.700038
CZK 25.368204
DJF 186.258433
DKK 7.459213
DOP 63.305535
DZD 140.00766
EGP 52.060203
ERN 15.720716
ETB 129.012117
FJD 2.380379
FKP 0.827242
GBP 0.832233
GEL 2.855918
GGP 0.827242
GHS 16.611978
GIP 0.827242
GMD 74.41137
GNF 9044.651585
GTQ 8.090067
GYD 219.261645
HKD 8.157359
HNL 26.384543
HRK 7.475996
HTG 137.593904
HUF 411.299528
IDR 16692.832925
ILS 3.893576
IMP 0.827242
INR 88.571355
IQD 1373.466575
IRR 44128.050457
ISK 146.100754
JEP 0.827242
JMD 166.433635
JOD 0.743174
JPY 162.013521
KES 135.723264
KGS 90.648567
KHR 4244.593516
KMF 489.959968
KPW 943.242577
KRW 1467.528958
KWD 0.322411
KYD 0.873361
KZT 519.70306
LAK 23009.888592
LBP 93905.078447
LKR 304.924111
LRD 189.120651
LSL 18.979788
LTL 3.094612
LVL 0.633954
LYD 5.119731
MAD 10.475264
MDL 19.084031
MGA 4894.383123
MKD 61.499953
MMK 3404.018207
MNT 3561.266195
MOP 8.401216
MRU 41.822309
MUR 48.632961
MVR 16.203073
MWK 1818.362584
MXN 21.399862
MYR 4.679553
MZN 67.022637
NAD 18.97998
NGN 1768.213504
NIO 38.557204
NOK 11.607569
NPR 141.67231
NZD 1.787898
OMR 0.4035
PAB 1.047993
PEN 3.977374
PGK 4.219178
PHP 61.802851
PKR 291.409517
PLN 4.343765
PYG 8225.236565
QAR 3.81568
RON 4.976446
RSD 116.993815
RUB 106.1678
RWF 1435.825416
SAR 3.934914
SBD 8.756995
SCR 14.316445
SDG 630.380512
SEK 11.596769
SGD 1.410704
SHP 0.827242
SLE 23.659663
SLL 21977.042238
SOS 598.917452
SRD 37.106106
STD 21692.472405
SVC 9.169938
SYP 2633.251262
SZL 18.980071
THB 36.391332
TJS 11.161424
TMT 3.668167
TND 3.317061
TOP 2.454635
TRY 36.149672
TTD 7.1138
TWD 34.1281
TZS 2779.798908
UAH 43.266431
UGX 3872.047297
USD 1.048048
UYU 44.65797
UZS 13498.85466
VES 48.210488
VND 26643.9939
VUV 124.426335
WST 2.925721
XAF 653.458476
XAG 0.033959
XAU 0.000393
XCD 2.832401
XDR 0.799443
XOF 649.260344
XPF 119.331742
YER 261.933367
ZAR 18.957858
ZMK 9433.687606
ZMW 28.899502
ZWL 337.470948
  • RBGPF

    -0.5000

    59.69

    -0.84%

  • BCC

    2.9500

    140.36

    +2.1%

  • SCS

    -0.0300

    13.04

    -0.23%

  • RELX

    0.6500

    45.76

    +1.42%

  • CMSC

    0.1200

    24.64

    +0.49%

  • NGG

    -0.1700

    63.1

    -0.27%

  • GSK

    0.3500

    33.7

    +1.04%

  • RIO

    0.1800

    62.57

    +0.29%

  • BTI

    -0.1000

    36.98

    -0.27%

  • JRI

    0.0000

    13.23

    0%

  • BP

    0.4400

    29.52

    +1.49%

  • BCE

    -0.3200

    26.68

    -1.2%

  • CMSD

    0.1850

    24.445

    +0.76%

  • AZN

    1.0600

    64.26

    +1.65%

  • RYCEF

    0.1800

    6.79

    +2.65%

  • VOD

    -0.1000

    8.84

    -1.13%

Nobel chemistry winner sees engineered proteins solving tough problems
Nobel chemistry winner sees engineered proteins solving tough problems / Photo: Ian C. Haydon - UW Medecine Institute for Protein Design/AFP

Nobel chemistry winner sees engineered proteins solving tough problems

Whether it's battling tumors or breaking down plastic, American scientist David Baker, co-recipient of this year's Nobel Prize in Chemistry, has an answer: engineering proteins that don't naturally exist -- a concept once dismissed as "crazy."

Text size:

Today, proteins with novel functions are flowing steadily out of his lab, with an endless list of potential applications ranging from ultra-targeted therapies to the development of new vaccines.

"Across the range of problems that we face today in medicine and health, sustainability, energy, and technology, I think the potential for protein design is enormous," Baker told AFP via video call from Seattle, hours after learning of his Nobel win alongside two other laureates.

Proteins are organic molecules that play a fundamental role in almost every function of living organisms, from muscle contraction and food digestion to neuron activation and more.

"The ones in nature evolved to solve all the problems that were faced during natural selection," explained the 62-year-old University of Washington professor.

"But humans face new problems today," added the biochemist and computational biologist.

"We're heating up the planet, so we need new solutions in ecology and sustainability. We live longer, so there's new diseases which are relevant, like Alzheimer's disease. There's new pathogens like coronavirus."

Rather than leave these problems up to evolution -- a "brutal" solution that would take a very, very long time -- "with new proteins, we can solve those problems, but in a very short time," he said.

- From fringe to mainstream -

All proteins are composed of chains of amino acids, whose sequence dictates their shape -- and ultimately their function.

For decades, scientists have tried to determine protein structures based on these amino acid sequences.

In the late 1990s, Baker made strides towards solving this problem with a computer software he developed called Rosetta.

His success prompted a shift his focus to the reverse approach: starting with a desired shape and using Rosetta to identify the corresponding amino acid sequence. This sequence can then be introduced into bacteria, which synthesize the new protein that can be harvested and studied.

In 2003, he published his breakthrough finding -- the creation of the first-ever protein not found in nature -- though it still lacked a defined function.

"Then we started trying to design proteins that actually would do useful things," Baker recalled. "And that's when people, I think, really started thinking it was crazy."

But "for the last 20 years -— and really, most recently, the last five years -— we've been able to make proteins that do all kinds of amazing things," he said. Rosetta meanwhile has been progressively improved to incorporate artificial intelligence.

"I think what's kind of funny now is that the lunatic fringe, which pretty much no one was doing, has now entered the mainstream," he added with a laugh.

- Keys that fit locks -

How do scientists decide what shape a new protein needs to achieve the desired function?

Baker gives the example of a tumor. "We know some protein that's on the surface of that tumor, and we know its shape. What we do is we design a protein that acts like a key fitting into a lock," he explained.

Another application: breaking down plastic. In this case, a protein is designed to attach itself to the plastic molecule, accompanied by chemical compounds to "cut" it.

In medicine, this technology has already been used in a Covid-19 vaccine approved in South Korea. Researchers are also exploring its potential to create new materials.

"In biology, we have tooth and bone, we have shells, which are made by proteins interacting with inorganic compounds like calcium carbonate or calcium phosphate," says Baker, envisioning proteins interacting with other compounds to create entirely new materials with unique properties.

Greenhouse gas capture, a universal flu vaccine, improved antivenom -- Baker's wish list goes on and on.

"As protein design becomes more powerful, I'm incredibly excited about all the problems that we will be able to solve."

(P.Werner--BBZ)