Berliner Boersenzeitung - Drones help solve forest carbon capture riddle

EUR -
AED 4.102936
AFN 77.459209
ALL 99.457975
AMD 432.778937
ANG 2.014982
AOA 1037.198836
ARS 1075.462107
AUD 1.637702
AWG 2.010723
AZN 1.896412
BAM 1.957567
BBD 2.257397
BDT 133.610576
BGN 1.967095
BHD 0.420956
BIF 3240.766592
BMD 1.117068
BND 1.443677
BOB 7.725834
BRL 6.060991
BSD 1.118089
BTN 93.516982
BWP 14.711012
BYN 3.658936
BYR 21894.534621
BZD 2.253583
CAD 1.51451
CDF 3207.102402
CHF 0.945106
CLF 0.037685
CLP 1039.834343
CNY 7.868957
CNH 7.865561
COP 4652.867874
CRC 579.176012
CUC 1.117068
CUP 29.602304
CVE 110.361631
CZK 25.09773
DJF 199.096109
DKK 7.459401
DOP 67.11516
DZD 147.697258
EGP 54.203943
ERN 16.756021
ETB 128.672268
FJD 2.455148
FKP 0.850713
GBP 0.838751
GEL 3.049838
GGP 0.850713
GHS 17.609655
GIP 0.850713
GMD 76.520298
GNF 9660.63171
GTQ 8.642567
GYD 233.866865
HKD 8.701854
HNL 27.734781
HRK 7.594958
HTG 147.340329
HUF 394.325395
IDR 16862.310423
ILS 4.193842
IMP 0.850713
INR 93.28429
IQD 1464.608618
IRR 47020.184922
ISK 152.323096
JEP 0.850713
JMD 175.656948
JOD 0.791665
JPY 158.837019
KES 144.22468
KGS 94.14088
KHR 4537.973401
KMF 493.018125
KPW 1005.36065
KRW 1485.761989
KWD 0.340516
KYD 0.931732
KZT 535.488455
LAK 24688.058616
LBP 100120.360598
LKR 340.334086
LRD 223.60779
LSL 19.480105
LTL 3.298412
LVL 0.675704
LYD 5.325711
MAD 10.842591
MDL 19.510432
MGA 5037.455838
MKD 61.670102
MMK 3628.193592
MNT 3795.79733
MOP 8.97552
MRU 44.25794
MUR 51.251405
MVR 17.158436
MWK 1938.706188
MXN 21.561716
MYR 4.671621
MZN 71.324681
NAD 19.480105
NGN 1831.914005
NIO 41.146764
NOK 11.711141
NPR 149.618968
NZD 1.787354
OMR 0.430023
PAB 1.118089
PEN 4.197394
PGK 4.438966
PHP 61.937515
PKR 310.954552
PLN 4.274947
PYG 8727.720029
QAR 4.076069
RON 4.974525
RSD 117.085522
RUB 103.440971
RWF 1505.731882
SAR 4.191907
SBD 9.279414
SCR 14.899487
SDG 671.918347
SEK 11.341279
SGD 1.439918
SHP 0.850713
SLE 25.521993
SLL 23424.35363
SOS 638.970916
SRD 33.347817
STD 23121.054172
SVC 9.782741
SYP 2806.667024
SZL 19.465218
THB 36.952903
TJS 11.884819
TMT 3.909738
TND 3.386365
TOP 2.61629
TRY 38.074039
TTD 7.59979
TWD 35.674679
TZS 3042.560594
UAH 46.331582
UGX 4151.672326
USD 1.117068
UYU 45.930216
UZS 14243.726675
VEF 4046637.851088
VES 41.058342
VND 27412.851
VUV 132.620568
WST 3.124956
XAF 656.537735
XAG 0.035844
XAU 0.00043
XCD 3.018932
XDR 0.828633
XOF 656.537735
XPF 119.331742
YER 279.630082
ZAR 19.542269
ZMK 10054.950521
ZMW 29.096607
ZWL 359.69547
  • RBGPF

    60.5000

    60.5

    +100%

  • RELX

    0.7600

    48.13

    +1.58%

  • CMSC

    0.0650

    25.12

    +0.26%

  • GSK

    -0.8100

    41.62

    -1.95%

  • SCS

    -0.8000

    13.31

    -6.01%

  • RIO

    2.2700

    65.18

    +3.48%

  • AZN

    0.3200

    78.9

    +0.41%

  • BTI

    -0.3100

    37.57

    -0.83%

  • RYCEF

    -0.0200

    6.93

    -0.29%

  • NGG

    -1.2200

    68.83

    -1.77%

  • CMSD

    0.0300

    25.01

    +0.12%

  • VOD

    -0.1700

    10.06

    -1.69%

  • BCC

    7.6300

    144.69

    +5.27%

  • BCE

    -0.4200

    35.19

    -1.19%

  • BP

    0.3300

    32.76

    +1.01%

  • JRI

    -0.0400

    13.4

    -0.3%

Drones help solve forest carbon capture riddle
Drones help solve forest carbon capture riddle / Photo: MANAN VATSYAYANA - AFP

Drones help solve forest carbon capture riddle

On a hillside overlooking cabbage fields outside the northern Thai city of Chiang Mai, a drone's rotors begin to whir, lifting it over a patch of forest.

Text size:

It moves back and forth atop the rich canopy, transmitting photos to be knitted into a 3D model that reveals the woodland's health and helps estimate how much carbon it can absorb.

Drones are part of an increasingly sophisticated arsenal used by scientists to understand forests and their role in the battle against climate change.

The basic premise is simple: woodlands suck in and store carbon dioxide, the greenhouse gas that is the largest contributor to climate change.

But how much they absorb is a complicated question.

A forest's size is a key part of the answer -- and deforestation has caused tree cover to fall 12 percent globally since 2000, according to Global Forest Watch.

But composition is also important: different species sequester carbon differently, and trees' age and size matter, too.

Knowing how much carbon forests store is crucial to understanding how quickly the world needs to cut emissions, and most current estimates mix high-level imagery from satellites with small, labour-intensive ground surveys.

"Normally, we would go into this forest, we would put in the pole, we would have our piece of string, five metres long. We would walk around in a circle, we would measure all the trees in a circle," explained Stephen Elliott, research director at Chiang Mai University's Forest Restoration Research Unit (FORRU).

But "if you've got 20 students stomping around with tape measures and poles... you're going to trash the understory," he said, referring to the layer of vegetation between the forest floor and the canopy.

That is where the drone comes in, he said, gesturing to the Phantom model hovering overhead.

"With this, you don't set foot in the forest."

- 'Every tree' -

Three measurements are needed to estimate a tree's absorptive capacity: height, girth and wood density, which differs by species.

As an assistant looks through binoculars for birds that might collide with the drone, the machine flies a path plotted into a computer programme.

"We collect data or capture (images) every three seconds," explained Worayut Takaew, a FORRU field research officer and drone operator.

"The overlapping images are then rendered into a 3D model that can be viewed from different angles."

The patch of woodland being surveyed is part of a decades-long project led by Elliott and his team that has reforested around 100 hectares by planting a handful of key species.

Their goal was not large-scale reforestation, but developing best practices: planting native species, encouraging the return of animals that bring in seeds from other species and working with local communities.

The drone's 3D model is a potent visual representation of their success, particularly compared to straggly untouched control plots nearby.

But it is also being developed as a way to avoid labour-intensive ground surveys.

"Once you've got the model, you can measure the height of every tree in the model. Not samples, every tree," said Elliott.

A forest's carbon potential goes beyond its trees, though, with leaf litter and soil also serving as stores.

So these too are collected for analysis, which Elliott says shows their reforested plots store carbon at levels close to undamaged woodland nearby.

- 'More and more precise' -

But for all its bird's-eye insights, the drone has one major limitation: it cannot see below the canopy.

For that, researchers need technology like LiDAR -- high-resolution, remote-sensing equipment that effectively scans the whole forest.

"You can go inside the forest... and really reconstruct the shape and the size of each tree," explained Emmanuel Paradis, a researcher at France's National Research Institute for Sustainable Development.

He is leading a multi-year project to build the most accurate analysis yet of how much carbon Thailand's forests can store.

It will survey five different types of forests, including some of FORRU's plots, using drone-mounted LiDAR and advanced analysis of the microbes and fungi in soil that sustain trees.

"The aim is to estimate at the country level... how much carbon can be stored by one hectare anywhere in Thailand," he said.

The stakes are high at a time of fierce debate about whether existing estimates of the world's forest carbon capacity are right.

"Many people, and I'm a bit of this opinion, think that these estimates are not accurate enough," Paradis said.

"Estimations which are too optimistic can give too much hope and too much optimism on the possibilities of forests to store carbon," he warned.

The urgency of the question is driving fast developments, including the launch next year of the European Space Agency's Biomass satellite, designed to monitor forest carbon stocks.

"The technology is evolving, the satellites are more and more precise... and the statistical technologies are more and more precise," said Paradis.

(P.Werner--BBZ)